BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31348970)

  • 1. Structural characterization of lignin in heartwood, sapwood, and bark of eucalyptus.
    Xiao MZ; Chen WJ; Hong S; Pang B; Cao XF; Wang YY; Yuan TQ; Sun RC
    Int J Biol Macromol; 2019 Oct; 138():519-527. PubMed ID: 31348970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unmasking the heterogeneity of carbohydrates in heartwood, sapwood, and bark of Eucalyptus.
    Xiao MZ; Chen WJ; Cao XF; Chen YY; Zhao BC; Jiang ZH; Yuan TQ; Sun RC
    Carbohydr Polym; 2020 Jun; 238():116212. PubMed ID: 32299557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Features of Alkaline Dioxane Lignin and Residual Lignin from Eucalyptus grandis × E. urophylla.
    Chen WJ; Zhao BC; Cao XF; Yuan TQ; Shi Q; Wang SF; Sun RC
    J Agric Food Chem; 2019 Jan; 67(3):968-974. PubMed ID: 30580517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactivity of syringyl and guaiacyl lignin units and delignification kinetics in the kraft pulping of Eucalyptus globulus wood using Py-GC-MS/FID.
    Lourenço A; Gominho J; Marques AV; Pereira H
    Bioresour Technol; 2012 Nov; 123():296-302. PubMed ID: 22940333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated hot-compressed water and laccase-mediator treatments of Eucalyptus grandis fibers: structural changes of fiber and lignin.
    Wu JQ; Wen JL; Yuan TQ; Sun RC
    J Agric Food Chem; 2015 Feb; 63(6):1763-72. PubMed ID: 25639522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Characterization of Lignins from Willow Bark and Wood.
    Dou J; Kim H; Li Y; Padmakshan D; Yue F; Ralph J; Vuorinen T
    J Agric Food Chem; 2018 Jul; 66(28):7294-7300. PubMed ID: 29932676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of milled wood lignin (MWL) in Loblolly pine stem wood, residue, and bark.
    Huang F; Singh PM; Ragauskas AJ
    J Agric Food Chem; 2011 Dec; 59(24):12910-6. PubMed ID: 22141335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of alkaline preswelling on the structure of lignins from Eucalyptus.
    Chen WJ; Yang S; Zhang Y; Wang YY; Yuan TQ; Sun RC
    Sci Rep; 2017 May; 7():45752. PubMed ID: 28462935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignin composition and structure in young versus adult Eucalyptus globulus plants.
    Rencoret J; Gutiérrez A; Nieto L; Jiménez-Barbero J; Faulds CB; Kim H; Ralph J; Martínez AT; Del Río JC
    Plant Physiol; 2011 Feb; 155(2):667-82. PubMed ID: 21098672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural variation of eucalyptus lignin in a combination of hydrothermal and alkali treatments.
    Sun SN; Li HY; Cao XF; Xu F; Sun RC
    Bioresour Technol; 2015 Jan; 176():296-9. PubMed ID: 25435069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignin Films from Spruce, Eucalyptus, and Wheat Straw Studied with Electroacoustic and Optical Sensors: Effect of Composition and Electrostatic Screening on Enzyme Binding.
    Pereira A; Hoeger IC; Ferrer A; Rencoret J; Del Rio JC; Kruus K; Rahikainen J; Kellock M; Gutiérrez A; Rojas OJ
    Biomacromolecules; 2017 Apr; 18(4):1322-1332. PubMed ID: 28287708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heartwood and sapwood in eucalyptus trees: non-conventional approach to wood quality.
    Cherelli SG; Sartori MMP; Próspero AG; Ballarin AW
    An Acad Bras Cienc; 2018; 90(1):425-438. PubMed ID: 29641766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of organosolv pretreatment on the structural characteristics of lignin polymers and follow-up enzymatic hydrolysis of the substrates from Eucalyptus wood.
    Wang B; Shen XJ; Wen JL; Xiao L; Sun RC
    Int J Biol Macromol; 2017 Apr; 97():447-459. PubMed ID: 28099889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal trends in
    Ohashi S; Kuroda K; Takano T; Suzuki Y; Fujiwara T; Abe H; Kagawa A; Sugiyama M; Kubojima Y; Zhang C; Yamamoto K
    J Environ Radioact; 2017 Nov; 178-179():335-342. PubMed ID: 28965024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy.
    Capanema EA; Balakshin MY; Kadla JF
    J Agric Food Chem; 2005 Dec; 53(25):9639-49. PubMed ID: 16332110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrepancy of lignin dissolution from eucalyptus during formic acid fractionation.
    Li XY; Li MF
    Int J Biol Macromol; 2020 Dec; 164():4662-4670. PubMed ID: 32941904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignin from Tree Barks: Chemical Structure and Valorization.
    Neiva DM; Rencoret J; Marques G; Gutiérrez A; Gominho J; Pereira H; Del Río JC
    ChemSusChem; 2020 Sep; 13(17):4537-4547. PubMed ID: 32395900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in residual lignin properties between Betula verrucosa and Eucalyptus urograndis kraft pulps.
    Hänninen TA; Kontturi E; Isogai A; Vuorinen T
    Biopolymers; 2008 Oct; 89(10):889-93. PubMed ID: 18488987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insights into the alkali lignins involving the formation and transformation of arylglycerols and enol ethers.
    Zhao C; Li S; Zhang H; Yue F; Lu F
    Int J Biol Macromol; 2020 Jun; 152():411-417. PubMed ID: 32097737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in Chemical Constituents between
    Wei L; Ma R; Fu Y
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.