BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31349311)

  • 1. DeepDSSR: Deep Learning Structure for Human Donor Splice Sites Recognition.
    Alam T; Islam MT; Househ M; Bouzerdoum A; Kawsar FA
    Stud Health Technol Inform; 2019 Jul; 262():236-239. PubMed ID: 31349311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An automated framework for evaluation of deep learning models for splice site predictions.
    Zabardast A; Tamer EG; Son YA; Yılmaz A
    Sci Rep; 2023 Jun; 13(1):10221. PubMed ID: 37353532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human Splice-Site Prediction with Deep Neural Networks.
    Naito T
    J Comput Biol; 2018 Aug; 25(8):954-961. PubMed ID: 29668310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the effect of variants on splicing using Convolutional Neural Networks.
    Thanapattheerakul T; Engchuan W; Chan JH
    PeerJ; 2020; 8():e9470. PubMed ID: 32704450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DRANetSplicer: A Splice Site Prediction Model Based on Deep Residual Attention Networks.
    Liu X; Zhang H; Zeng Y; Zhu X; Zhu L; Fu J
    Genes (Basel); 2024 Mar; 15(4):. PubMed ID: 38674339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. COSSMO: predicting competitive alternative splice site selection using deep learning.
    Bretschneider H; Gandhi S; Deshwar AG; Zuberi K; Frey BJ
    Bioinformatics; 2018 Jul; 34(13):i429-i437. PubMed ID: 29949959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EDeepSSP: Explainable deep neural networks for exact splice sites prediction.
    Amilpur S; Bhukya R
    J Bioinform Comput Biol; 2020 Aug; 18(4):2050024. PubMed ID: 32696716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EnsembleSplice: ensemble deep learning model for splice site prediction.
    Akpokiro V; Martin T; Oluwadare O
    BMC Bioinformatics; 2022 Oct; 23(1):413. PubMed ID: 36203144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-performance approach for predicting donor splice sites based on short window size and imbalanced large samples.
    Zeng Y; Yuan H; Yuan Z; Chen Y
    Biol Direct; 2019 Apr; 14(1):6. PubMed ID: 30975175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the performance of sequence encoding schemes and machine learning methods for splice sites recognition.
    Meher PK; Sahu TK; Gahoi S; Satpathy S; Rao AR
    Gene; 2019 Jul; 705():113-126. PubMed ID: 31009682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational discovery of human coding and non-coding transcripts with conserved splice sites.
    Rose D; Hiller M; Schutt K; Hackermüller J; Backofen R; Stadler PF
    Bioinformatics; 2011 Jul; 27(14):1894-900. PubMed ID: 21622663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. JEDI: circular RNA prediction based on junction encoders and deep interaction among splice sites.
    Jiang JY; Ju CJ; Hao J; Chen M; Wang W
    Bioinformatics; 2021 Jul; 37(Suppl_1):i289-i298. PubMed ID: 34252942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discerning novel splice junctions derived from RNA-seq alignment: a deep learning approach.
    Zhang Y; Liu X; MacLeod J; Liu J
    BMC Genomics; 2018 Dec; 19(1):971. PubMed ID: 30591034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of human mRNA donor and acceptor sites from the DNA sequence.
    Brunak S; Engelbrecht J; Knudsen S
    J Mol Biol; 1991 Jul; 220(1):49-65. PubMed ID: 2067018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer-Associated Perturbations in Alternative Pre-messenger RNA Splicing.
    Shkreta L; Bell B; Revil T; Venables JP; Prinos P; Elela SA; Chabot B
    Cancer Treat Res; 2013; 158():41-94. PubMed ID: 24222354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmarking deep learning splice prediction tools using functional splice assays.
    Riepe TV; Khan M; Roosing S; Cremers FPM; 't Hoen PAC
    Hum Mutat; 2021 Jul; 42(7):799-810. PubMed ID: 33942434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores.
    Rentzsch P; Schubach M; Shendure J; Kircher M
    Genome Med; 2021 Feb; 13(1):31. PubMed ID: 33618777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational approach for prediction of donor splice sites with improved accuracy.
    Meher PK; Sahu TK; Rao AR; Wahi SD
    J Theor Biol; 2016 Sep; 404():285-294. PubMed ID: 27302911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Splice-site identification for exon prediction using bidirectional LSTM-RNN approach.
    Singh N; Nath R; Singh DB
    Biochem Biophys Rep; 2022 Jul; 30():101285. PubMed ID: 35663929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions.
    Thanaraj TA; Clark F
    Nucleic Acids Res; 2001 Jun; 29(12):2581-93. PubMed ID: 11410667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.