These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 31349421)
1. Carbon nanotube composite hydrogels for vocal fold tissue engineering: Biocompatibility, rheology, and porosity. Ravanbakhsh H; Bao G; Latifi N; Mongeau LG Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109861. PubMed ID: 31349421 [TBL] [Abstract][Full Text] [Related]
2. Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering. Van den Broeck L; Piluso S; Soultan AH; De Volder M; Patterson J Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1133-1144. PubMed ID: 30812997 [TBL] [Abstract][Full Text] [Related]
3. In Vitro Investigation of Vocal Fold Cellular Response to Variations in Hydrogel Porosity and Elasticity. Nejati S; Mongeau L ACS Biomater Sci Eng; 2024 Jun; 10(6):3909-3922. PubMed ID: 38783819 [TBL] [Abstract][Full Text] [Related]
4. Carbon nanotube-composite hydrogels promote intercalated disc assembly in engineered cardiac tissues through β1-integrin mediated FAK and RhoA pathway. Sun H; Tang J; Mou Y; Zhou J; Qu L; Duval K; Huang Z; Lin N; Dai R; Liang C; Chen Z; Tang L; Tian F Acta Biomater; 2017 Jan; 48():88-99. PubMed ID: 27769942 [TBL] [Abstract][Full Text] [Related]
5. A Two-Step Method for Transferring Single-Walled Carbon Nanotubes onto a Hydrogel Substrate. Imaninezhad M; Kuljanishvili I; Zustiak SP Macromol Biosci; 2017 Mar; 17(3):. PubMed ID: 27701819 [TBL] [Abstract][Full Text] [Related]
6. Biocompatible chitosan/polyethylene glycol/multi-walled carbon nanotube composite scaffolds for neural tissue engineering. Sang S; Cheng R; Cao Y; Yan Y; Shen Z; Zhao Y; Han Y J Zhejiang Univ Sci B; 2022 Jan; 23(1):58-73. PubMed ID: 35029088 [TBL] [Abstract][Full Text] [Related]
7. Mechanomimetic hydrogels for vocal fold lamina propria regeneration. Kutty JK; Webb K J Biomater Sci Polym Ed; 2009; 20(5-6):737-56. PubMed ID: 19323887 [TBL] [Abstract][Full Text] [Related]
8. Incorporation of types I and III collagen in tunable hyaluronan hydrogels for vocal fold tissue engineering. Walimbe T; Calve S; Panitch A; Sivasankar MP Acta Biomater; 2019 Mar; 87():97-107. PubMed ID: 30708064 [TBL] [Abstract][Full Text] [Related]
9. Peptide and peptide-carbon nanotube hydrogels as scaffolds for tissue & 3D tumor engineering. Sheikholeslam M; Wheeler SD; Duke KG; Marsden M; Pritzker M; Chen P Acta Biomater; 2018 Mar; 69():107-119. PubMed ID: 29248638 [TBL] [Abstract][Full Text] [Related]
10. Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs. Sun H; Zhou J; Huang Z; Qu L; Lin N; Liang C; Dai R; Tang L; Tian F Int J Nanomedicine; 2017; 12():3109-3120. PubMed ID: 28450785 [TBL] [Abstract][Full Text] [Related]
11. Carbon nanotubes promote cell migration in hydrogels. Ravanbakhsh H; Bao G; Mongeau L Sci Rep; 2020 Feb; 10(1):2543. PubMed ID: 32054957 [TBL] [Abstract][Full Text] [Related]
12. Multiwalled Carbon Nanotube-Chitosan Scaffold: Cytotoxic, Apoptoti c, and Necrotic Effects on Chondrocyte Cell Lines. Ilbasmis-Tamer S; Ciftci H; Turk M; Degim T; Tamer U Curr Pharm Biotechnol; 2017; 18(4):327-335. PubMed ID: 28137220 [TBL] [Abstract][Full Text] [Related]
13. Carbon Nanotube Reinforced Supramolecular Hydrogels for Bioapplications. Mihajlovic M; Mihajlovic M; Dankers PYW; Masereeuw R; Sijbesma RP Macromol Biosci; 2019 Jan; 19(1):e1800173. PubMed ID: 30085403 [TBL] [Abstract][Full Text] [Related]
14. Effects of matrix composition, microstructure, and viscoelasticity on the behaviors of vocal fold fibroblasts cultured in three-dimensional hydrogel networks. Farran AJ; Teller SS; Jha AK; Jiao T; Hule RA; Clifton RJ; Pochan DP; Duncan RL; Jia X Tissue Eng Part A; 2010 Apr; 16(4):1247-61. PubMed ID: 20064012 [TBL] [Abstract][Full Text] [Related]
15. 3D Printed Polycaprolactone Carbon Nanotube Composite Scaffolds for Cardiac Tissue Engineering. Ho CM; Mishra A; Lin PT; Ng SH; Yeong WY; Kim YJ; Yoon YJ Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27892655 [TBL] [Abstract][Full Text] [Related]
16. Preparation of fibrin gel scaffolds containing MWCNT/PU nanofibers for neural tissue engineering. Hasanzadeh E; Ebrahimi-Barough S; Mirzaei E; Azami M; Tavangar SM; Mahmoodi N; Basiri A; Ai J J Biomed Mater Res A; 2019 Apr; 107(4):802-814. PubMed ID: 30578713 [TBL] [Abstract][Full Text] [Related]
18. Viscoelasticity of hyaluronic acid-gelatin hydrogels for vocal fold tissue engineering. Kazemirad S; Heris HK; Mongeau L J Biomed Mater Res B Appl Biomater; 2016 Feb; 104(2):283-90. PubMed ID: 25728914 [TBL] [Abstract][Full Text] [Related]
19. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161 [TBL] [Abstract][Full Text] [Related]
20. Biocompatible and mechanically robust nanocomposite hydrogels for potential applications in tissue engineering. Kouser R; Vashist A; Zafaryab M; Rizvi MA; Ahmad S Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():168-179. PubMed ID: 29519426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]