BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31349521)

  • 1. Silk particles, microfibres and nanofibres: A comparative study of their functions in 3D printing hydrogel scaffolds.
    Zhang J; Allardyce BJ; Rajkhowa R; Kalita S; Dilley RJ; Wang X; Liu X
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109784. PubMed ID: 31349521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printing of Silk Particle-Reinforced Chitosan Hydrogel Structures and Their Properties.
    Zhang J; Allardyce BJ; Rajkhowa R; Zhao Y; Dilley RJ; Redmond SL; Wang X; Liu X
    ACS Biomater Sci Eng; 2018 Aug; 4(8):3036-3046. PubMed ID: 33435023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores.
    Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y
    Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photopolymerizable chitosan hydrogels with improved strength and 3D printability.
    Zhang M; Wan T; Fan P; Shi K; Chen X; Yang H; Liu X; Xu W; Zhou Y
    Int J Biol Macromol; 2021 Dec; 193(Pt A):109-116. PubMed ID: 34699888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silk fibroin reactive inks for 3D printing crypt-like structures.
    Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA
    Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features.
    Mora-Boza A; Włodarczyk-Biegun MK; Del Campo A; Vázquez-Lasa B; Román JS
    Biomater Sci; 2019 Dec; 8(1):506-516. PubMed ID: 31764919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
    Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S
    Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Bioprinting of Self-Standing Silk-Based Bioink.
    Zheng Z; Wu J; Liu M; Wang H; Li C; Rodriguez MJ; Li G; Wang X; Kaplan DL
    Adv Healthc Mater; 2018 Mar; 7(6):e1701026. PubMed ID: 29292585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatible fluorescent silk fibroin bioink for digital light processing 3D printing.
    Lee YJ; Lee JS; Ajiteru O; Lee OJ; Lee JS; Lee H; Kim SW; Park JW; Kim KY; Choi KY; Hong H; Sultan T; Kim SH; Park CH
    Int J Biol Macromol; 2022 Jul; 213():317-327. PubMed ID: 35605719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering.
    Mirahmadi F; Tafazzoli-Shadpour M; Shokrgozar MA; Bonakdar S
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4786-94. PubMed ID: 24094188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic Mineralization of Three-Dimensional Printed Alginate/TEMPO-Oxidized Cellulose Nanofibril Scaffolds for Bone Tissue Engineering.
    Abouzeid RE; Khiari R; Beneventi D; Dufresne A
    Biomacromolecules; 2018 Nov; 19(11):4442-4452. PubMed ID: 30301348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Cell Loading of Recombinant Spider Silk Based Bioinks on Gelation and Printability.
    Lechner A; Trossmann VT; Scheibel T
    Macromol Biosci; 2022 Mar; 22(3):e2100390. PubMed ID: 34882980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired 3D printable pectin-nanocellulose ink formulations.
    Cernencu AI; Lungu A; Stancu IC; Serafim A; Heggset E; Syverud K; Iovu H
    Carbohydr Polym; 2019 Sep; 220():12-21. PubMed ID: 31196530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography.
    Morris VB; Nimbalkar S; Younesi M; McClellan P; Akkus O
    Ann Biomed Eng; 2017 Jan; 45(1):286-296. PubMed ID: 27164837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modifying the mechanical properties of silk nanofiber scaffold by knitted orientation for regenerative medicine applications.
    Dodel M; Hemmati Nejad N; Bahrami SH; Soleimani M; Hanaee-Ahvaz H
    Cell Mol Biol (Noisy-le-grand); 2016 Aug; 62(10):16-25. PubMed ID: 27609469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior.
    Bidgoli MR; Alemzadeh I; Tamjid E; Khafaji M; Vossoughi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109688. PubMed ID: 31349405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved 3D Printing and Cell Biology Characterization of Inorganic-Filler Containing Alginate-Based Composites for Bone Regeneration: Particle Shape and Effective Surface Area Are the Dominant Factors for Printing Performance.
    Bednarzig V; Schrüfer S; Schneider TC; Schubert DW; Detsch R; Boccaccini AR
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
    Bendtsen ST; Quinnell SP; Wei M
    J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombinant spider silk-based bioinks.
    DeSimone E; Schacht K; Pellert A; Scheibel T
    Biofabrication; 2017 Nov; 9(4):044104. PubMed ID: 28976366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES].
    Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.