These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 31349521)
1. Silk particles, microfibres and nanofibres: A comparative study of their functions in 3D printing hydrogel scaffolds. Zhang J; Allardyce BJ; Rajkhowa R; Kalita S; Dilley RJ; Wang X; Liu X Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109784. PubMed ID: 31349521 [TBL] [Abstract][Full Text] [Related]
2. 3D Printing of Silk Particle-Reinforced Chitosan Hydrogel Structures and Their Properties. Zhang J; Allardyce BJ; Rajkhowa R; Zhao Y; Dilley RJ; Redmond SL; Wang X; Liu X ACS Biomater Sci Eng; 2018 Aug; 4(8):3036-3046. PubMed ID: 33435023 [TBL] [Abstract][Full Text] [Related]
3. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153 [TBL] [Abstract][Full Text] [Related]
4. Photopolymerizable chitosan hydrogels with improved strength and 3D printability. Zhang M; Wan T; Fan P; Shi K; Chen X; Yang H; Liu X; Xu W; Zhou Y Int J Biol Macromol; 2021 Dec; 193(Pt A):109-116. PubMed ID: 34699888 [TBL] [Abstract][Full Text] [Related]
5. Silk fibroin reactive inks for 3D printing crypt-like structures. Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975 [TBL] [Abstract][Full Text] [Related]
6. Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features. Mora-Boza A; Włodarczyk-Biegun MK; Del Campo A; Vázquez-Lasa B; Román JS Biomater Sci; 2019 Dec; 8(1):506-516. PubMed ID: 31764919 [TBL] [Abstract][Full Text] [Related]
7. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks. Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047 [TBL] [Abstract][Full Text] [Related]
8. 3D Bioprinting of Self-Standing Silk-Based Bioink. Zheng Z; Wu J; Liu M; Wang H; Li C; Rodriguez MJ; Li G; Wang X; Kaplan DL Adv Healthc Mater; 2018 Mar; 7(6):e1701026. PubMed ID: 29292585 [TBL] [Abstract][Full Text] [Related]
9. Biocompatible fluorescent silk fibroin bioink for digital light processing 3D printing. Lee YJ; Lee JS; Ajiteru O; Lee OJ; Lee JS; Lee H; Kim SW; Park JW; Kim KY; Choi KY; Hong H; Sultan T; Kim SH; Park CH Int J Biol Macromol; 2022 Jul; 213():317-327. PubMed ID: 35605719 [TBL] [Abstract][Full Text] [Related]
10. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mirahmadi F; Tafazzoli-Shadpour M; Shokrgozar MA; Bonakdar S Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4786-94. PubMed ID: 24094188 [TBL] [Abstract][Full Text] [Related]
11. Biomimetic Mineralization of Three-Dimensional Printed Alginate/TEMPO-Oxidized Cellulose Nanofibril Scaffolds for Bone Tissue Engineering. Abouzeid RE; Khiari R; Beneventi D; Dufresne A Biomacromolecules; 2018 Nov; 19(11):4442-4452. PubMed ID: 30301348 [TBL] [Abstract][Full Text] [Related]
12. Impact of Cell Loading of Recombinant Spider Silk Based Bioinks on Gelation and Printability. Lechner A; Trossmann VT; Scheibel T Macromol Biosci; 2022 Mar; 22(3):e2100390. PubMed ID: 34882980 [TBL] [Abstract][Full Text] [Related]
14. Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography. Morris VB; Nimbalkar S; Younesi M; McClellan P; Akkus O Ann Biomed Eng; 2017 Jan; 45(1):286-296. PubMed ID: 27164837 [TBL] [Abstract][Full Text] [Related]
15. Modifying the mechanical properties of silk nanofiber scaffold by knitted orientation for regenerative medicine applications. Dodel M; Hemmati Nejad N; Bahrami SH; Soleimani M; Hanaee-Ahvaz H Cell Mol Biol (Noisy-le-grand); 2016 Aug; 62(10):16-25. PubMed ID: 27609469 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior. Bidgoli MR; Alemzadeh I; Tamjid E; Khafaji M; Vossoughi M Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109688. PubMed ID: 31349405 [TBL] [Abstract][Full Text] [Related]
17. Improved 3D Printing and Cell Biology Characterization of Inorganic-Filler Containing Alginate-Based Composites for Bone Regeneration: Particle Shape and Effective Surface Area Are the Dominant Factors for Printing Performance. Bednarzig V; Schrüfer S; Schneider TC; Schubert DW; Detsch R; Boccaccini AR Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563143 [TBL] [Abstract][Full Text] [Related]
18. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
20. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES]. Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]