BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31349533)

  • 1. A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro.
    Norouz F; Halabian R; Salimi A; Ghollasi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109857. PubMed ID: 31349533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteoblast differentiation of mesenchymal stem cells on modified PES-PEG electrospun fibrous composites loaded with Zn
    Amiri B; Ghollasi M; Shahrousvand M; Kamali M; Salimi A
    Differentiation; 2016; 92(4):148-158. PubMed ID: 27575952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteogenic differentiation of human mesenchymal stem cells in 3-D Zr-Si organic-inorganic scaffolds produced by two-photon polymerization technique.
    Koroleva A; Deiwick A; Nguyen A; Schlie-Wolter S; Narayan R; Timashev P; Popov V; Bagratashvili V; Chichkov B
    PLoS One; 2015; 10(2):e0118164. PubMed ID: 25706270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible magnetic polyurethane/Fe
    Shahrousvand M; Hoseinian MS; Ghollasi M; Karbalaeimahdi A; Salimi A; Tabar FA
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():556-567. PubMed ID: 28254331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic polyurethane/TiO
    Zhu Q; Li X; Fan Z; Xu Y; Niu H; Li C; Dang Y; Huang Z; Wang Y; Guan J
    Mater Sci Eng C Mater Biol Appl; 2018 Apr; 85():79-87. PubMed ID: 29407160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteogenic Differentiation of Mesenchymal Stem Cells with Silica-Coated Gold Nanoparticles for Bone Tissue Engineering.
    Gandhimathi C; Quek YJ; Ezhilarasu H; Ramakrishna S; Bay BH; Srinivasan DK
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31623264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel biomimetic tripolymer scaffolds consisting of chitosan, collagen type 1, and hyaluronic acid for bone marrow-derived human mesenchymal stem cells-based bone tissue engineering.
    Mathews S; Bhonde R; Gupta PK; Totey S
    J Biomed Mater Res B Appl Biomater; 2014 Nov; 102(8):1825-34. PubMed ID: 24723571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro osteogenic differentiation of adipose-derived mesenchymal stem cell spheroids impairs their in vivo vascularization capacity inside implanted porous polyurethane scaffolds.
    Laschke MW; Schank TE; Scheuer C; Kleer S; Shadmanov T; Eglin D; Alini M; Menger MD
    Acta Biomater; 2014 Oct; 10(10):4226-35. PubMed ID: 24998773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity.
    Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C
    Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow perfusion culture of human mesenchymal stem cells on coralline hydroxyapatite scaffolds with various pore sizes.
    Bjerre L; Bünger C; Baatrup A; Kassem M; Mygind T
    J Biomed Mater Res A; 2011 Jun; 97(3):251-63. PubMed ID: 21442726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential osteogenic potential of human adipose-derived stem cells co-cultured with human osteoblasts on polymeric microfiber scaffolds.
    Rozila I; Azari P; Munirah S; Wan Safwani WK; Gan SN; Nur Azurah AG; Jahendran J; Pingguan-Murphy B; Chua KH
    J Biomed Mater Res A; 2016 Feb; 104(2):377-87. PubMed ID: 26414782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering.
    Lin D; Yang K; Tang W; Liu Y; Yuan Y; Liu C
    Colloids Surf B Biointerfaces; 2015 Jul; 131():1-11. PubMed ID: 25935647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenic potential of stem cells-seeded bioactive nanocomposite scaffolds: A comparative study between human mesenchymal stem cells derived from bone, umbilical cord Wharton's jelly, and adipose tissue.
    Kargozar S; Mozafari M; Hashemian SJ; Brouki Milan P; Hamzehlou S; Soleimani M; Joghataei MT; Gholipourmalekabadi M; Korourian A; Mousavizadeh K; Seifalian AM
    J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):61-72. PubMed ID: 27862947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor.
    Duan B; Wang M
    J R Soc Interface; 2010 Oct; 7 Suppl 5(Suppl 5):S615-29. PubMed ID: 20504805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced bone tissue regeneration of a biomimetic cellular scaffold with co-cultured MSCs-derived osteogenic and angiogenic cells.
    Li L; Li J; Zou Q; Zuo Y; Cai B; Li Y
    Cell Prolif; 2019 Sep; 52(5):e12658. PubMed ID: 31297910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of gold nanotube/nanowire-polyurethane composite based on castor oil and polyethylene glycol.
    Ganji Y; Kasra M; Salahshour Kordestani S; Bagheri Hariri M
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():341-9. PubMed ID: 25063127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of porous polyurethane/strontium-substituted hydroxyapatite composites for bone regeneration.
    Sariibrahimoglu K; Yang W; Leeuwenburgh SC; Yang F; Wolke JG; Zuo Y; Li Y; Jansen JA
    J Biomed Mater Res A; 2015 Jun; 103(6):1930-9. PubMed ID: 25203691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri-tasar silk fibroin nanofibrous scaffold.
    Panda N; Bissoyi A; Pramanik K; Biswas A
    J Biomater Sci Polym Ed; 2014; 25(13):1440-57. PubMed ID: 25090157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.