These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31349711)

  • 1. Sintering Copper Nanoparticles with Photonic Additive for Printed Conductive Patterns by Intense Pulsed Light.
    Chung WY; Lai YC; Yonezawa T; Liao YC
    Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31349711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room temperature synthesis of a copper ink for the intense pulsed light sintering of conductive copper films.
    Dharmadasa R; Jha M; Amos DA; Druffel T
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13227-34. PubMed ID: 24283767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct intense pulsed light sintering of inkjet-printed copper oxide layers within six milliseconds.
    Kang H; Sowade E; Baumann RR
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1682-7. PubMed ID: 24433059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inkjet Fabrication of Copper Patterns for Flexible Electronics: Using Paper with Active Precoatings.
    Öhlund T; Schuppert AK; Hummelgård M; Bäckström J; Nilsson HE; Olin H
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18273-82. PubMed ID: 26245645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid Printing Metal-mesh Transparent Conductive Films with Lower Energy Photonically Sintered Copper/tin Ink.
    Chen X; Wu X; Shao S; Zhuang J; Xie L; Nie S; Su W; Chen Z; Cui Z
    Sci Rep; 2017 Oct; 7(1):13239. PubMed ID: 29038555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Reducing Copper Precursor Inks and Photonic Additive Yield Conductive Patterns under Intense Pulsed Light.
    Rosen YS; Yakushenko A; Offenhäusser A; Magdassi S
    ACS Omega; 2017 Feb; 2(2):573-581. PubMed ID: 31457455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution phase synthesis and intense pulsed light sintering and reduction of a copper oxide ink with an encapsulating nickel oxide barrier.
    Jha M; Dharmadasa R; Draper GL; Sherehiy A; Sumanasekera G; Amos D; Druffel T
    Nanotechnology; 2015 May; 26(17):175601. PubMed ID: 25854751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulation of Screen-Printable Cu Molecular Ink for Conductive/Flexible/Solderable Cu Traces.
    Deore B; Paquet C; Kell AJ; Lacelle T; Liu X; Mozenson O; Lopinski G; Brzezina G; Guo C; Lafrenière S; Malenfant PRL
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38880-38894. PubMed ID: 31550883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly conductive copper films prepared by multilayer sintering of nanoparticles synthesized via arc discharge.
    Fu Q; Li W; Kruis FE
    Nanotechnology; 2023 Mar; 34(22):. PubMed ID: 36805345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductivity enhancement of Ag nanowire ink by decorating
    Feng J; Xing B; Xu J
    Nanotechnology; 2024 Feb; 35(17):. PubMed ID: 38262038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suitability of Copper Nitride as a Wiring Ink Sintered by Low-Energy Intense Pulsed Light Irradiation.
    Nakamura T; Cheong HJ; Takamura M; Yoshida M; Uemura S
    Nanomaterials (Basel); 2018 Aug; 8(8):. PubMed ID: 30110978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-pulse flash light sintering of bimodal Cu nanoparticle-ink for highly conductive printed Cu electrodes.
    Yu MH; Joo SJ; Kim HS
    Nanotechnology; 2017 May; 28(20):205205. PubMed ID: 28402291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics.
    Joo SJ; Hwang HJ; Kim HS
    Nanotechnology; 2014 Jul; 25(26):265601. PubMed ID: 24916116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intensive Plasmonic Flash Light Sintering of Copper Nanoinks Using a Band-Pass Light Filter for Highly Electrically Conductive Electrodes in Printed Electronics.
    Hwang YT; Chung WH; Jang YR; Kim HS
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8591-9. PubMed ID: 26975337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering.
    Wang BY; Yoo TH; Song YW; Lim DS; Oh YJ
    ACS Appl Mater Interfaces; 2013 May; 5(10):4113-9. PubMed ID: 23586602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Preparation of Ag Nanoparticle and Ink Used for Inkjet Printing of Paper Based Conductive Patterns.
    Cao L; Bai X; Lin Z; Zhang P; Deng S; Du X; Li W
    Materials (Basel); 2017 Aug; 10(9):. PubMed ID: 28846637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature, Crystalline Phase and Influence of Substrate Properties in Intense Pulsed Light Sintering of Copper Sulfide Nanoparticle Thin Films.
    Dexter M; Gao Z; Bansal S; Chang CH; Malhotra R
    Sci Rep; 2018 Feb; 8(1):2201. PubMed ID: 29396533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape-Tuned Junction Resistivity and Self-Damping Dynamics in Intense Pulsed Light Sintering of Silver Nanostructure Films.
    Hwang HJ; Malhotra R
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3536-3546. PubMed ID: 30585721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.