These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31349734)

  • 1. Influence of the Silver Nanoparticles (AgNPs) Formation Conditions onto Titanium Dioxide (TiO
    Nycz M; Arkusz K; Pijanowska DG
    Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31349734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrodes Based on a Titanium Dioxide Nanotube-Spherical Silver Nanoparticle Composite for Sensing of Proteins.
    Nycz M; Arkusz K; Pijanowska DG
    ACS Biomater Sci Eng; 2021 Jan; 7(1):105-113. PubMed ID: 33378150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Electrochemical Biosensor Based on Titanium Dioxide Nanotubes and Silver Nanoparticles for Heat Shock Protein 70 Detection.
    Nycz M; Arkusz K; Pijanowska DG
    Materials (Basel); 2021 Jul; 14(13):. PubMed ID: 34279337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Influence of the Parameters of a Gold Nanoparticle Deposition Method on Titanium Dioxide Nanotubes, Their Electrochemical Response, and Protein Adsorption.
    Paradowska E; Arkusz K; Pijanowska DG
    Biosensors (Basel); 2019 Nov; 9(4):. PubMed ID: 31756994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on Silver Ions Releasing Processes and Mechanical Properties of Surface-Modified Titanium Alloy Implants.
    Radtke A; Grodzicka M; Ehlert M; Muzioł TM; Szkodo M; Bartmański M; Piszczek P
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Gold Nanoparticles Deposition Methods and Their Influence on Electrochemical and Adsorption Properties of Titanium Dioxide Nanotubes.
    Paradowska E; Arkusz K; Pijanowska DG
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32992707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anodised TiO
    Gunputh UF; Le H; Handy RD; Tredwin C
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():638-644. PubMed ID: 30033297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergic effect of silver nanoparticles and carbon nanotubes on the simultaneous voltammetric determination of hydroquinone, catechol, bisphenol A and phenol.
    Goulart LA; Gonçalves R; Correa AA; Pereira EC; Mascaro LH
    Mikrochim Acta; 2017 Dec; 185(1):12. PubMed ID: 29594601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH dependent silver nanoparticles releasing titanium implant: A novel therapeutic approach to control peri-implant infection.
    Dong Y; Ye H; Liu Y; Xu L; Wu Z; Hu X; Ma J; Pathak JL; Liu J; Wu G
    Colloids Surf B Biointerfaces; 2017 Oct; 158():127-136. PubMed ID: 28688362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photofunctionalized and Drug-Loaded TiO
    Dai S; Jiang L; Liu L; Chen J; Liao Y; He S; Cui J; Liu X; Zhao A; Yang P; Huang N
    ACS Biomater Sci Eng; 2020 Apr; 6(4):2038-2049. PubMed ID: 33455322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophoresis deposition of Ag nanoparticles on TiO₂ nanotube arrays electrode for hydrogen peroxide sensing.
    Jiang Y; Zheng B; Du J; Liu G; Guo Y; Xiao D
    Talanta; 2013 Aug; 112():129-35. PubMed ID: 23708548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold nanoparticles-immobilized, hierarchically ordered, porous TiO2 nanotubes for biosensing of glutathione.
    Mers SS; Kumar ET; Ganesh V
    Int J Nanomedicine; 2015; 10 Suppl 1(Suppl 1):171-82. PubMed ID: 26491318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of silver speciation on the inflammatory regulation of AgNPs anchoring onto titania nanotubes.
    Yang C; Wang Z; Huang K; Weng J; Wang J; Zhou J; Feng B
    Colloids Surf B Biointerfaces; 2020 Oct; 194():111199. PubMed ID: 32585536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyethylenimine-carbon nanotubes composite as an electrochemical sensing platform for silver nanoparticles.
    Duan S; Yue R; Huang Y
    Talanta; 2016 Nov; 160():607-613. PubMed ID: 27591657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalytic, antimicrobial activities of biogenic silver nanoparticles and electrochemical degradation of water soluble dyes at glassy carbon/silver modified past electrode using buffer solution.
    Khan ZU; Khan A; Shah A; Chen Y; Wan P; Khan AU; Tahir K; Muhamma N; Khan FU; Shah HU
    J Photochem Photobiol B; 2016 Mar; 156():100-7. PubMed ID: 26874611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose acetate nanofibers embedded with AgNPs anchored TiO
    Jatoi AW; Kim IS; Ni QQ
    Carbohydr Polym; 2019 Mar; 207():640-649. PubMed ID: 30600049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoration of titanium dioxide nanotubes with silver nanoparticles using the photochemical deposition method and their application as an electrocatalyst to determine tinidazole.
    Koohi F; Zare HR; Shekari Z
    Anal Methods; 2021 Nov; 13(44):5343-5350. PubMed ID: 34730130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A silver nanoparticle loaded TiO2 nanoporous layer for visible light induced antimicrobial applications.
    Kamaraj K; George RP; Anandkumar B; Parvathavarthini N; Kamachi Mudali U
    Bioelectrochemistry; 2015 Dec; 106(Pt B):290-7. PubMed ID: 26205428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impedimetric aptasensor for Pseudomonas aeruginosa by using a glassy carbon electrode modified with silver nanoparticles.
    Roushani M; Sarabaegi M; Pourahmad F
    Mikrochim Acta; 2019 Oct; 186(11):725. PubMed ID: 31655899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of geometry and annealing temperature in argon atmosphere of TiO2 nanotubes on their electrochemical properties.
    Nycz M; Paradowska E; Arkusz K; Pijanowska DG
    Acta Bioeng Biomech; 2020; 22(1):165-177. PubMed ID: 32307458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.