These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31350300)

  • 1. Aimed limb movements in a hemimetabolous insect are intrinsically compensated for allometric wing growth by developmental mechanisms.
    Patel AJ; Matheson T
    J Exp Biol; 2019 Aug; 222(Pt 16):. PubMed ID: 31350300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hind wing of the desert locust (Schistocerca gregaria Forskål). I. Functional morphology and mode of operation.
    Wootton RJ; Evans KE; Herbert R; Smith CW
    J Exp Biol; 2000 Oct; 203(Pt 19):2921-31. PubMed ID: 10976029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The kinematics and neural control of high-speed kicking movements in the locust.
    Burrows M; Morris G
    J Exp Biol; 2001 Oct; 204(Pt 20):3471-81. PubMed ID: 11707497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Load compensation in targeted limb movements of an insect.
    Matheson T; Dürr V
    J Exp Biol; 2003 Sep; 206(Pt 18):3175-86. PubMed ID: 12909699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinated righting behaviour in locusts.
    Faisal AA; Matheson T
    J Exp Biol; 2001 Feb; 204(Pt 4):637-48. PubMed ID: 11171346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and deposition of resilin in energy stores for locust jumping.
    Burrows M
    J Exp Biol; 2016 Aug; 219(Pt 16):2449-57. PubMed ID: 27259374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor control of aimed limb movements in an insect.
    Page KL; Zakotnik J; Dürr V; Matheson T
    J Neurophysiol; 2008 Feb; 99(2):484-99. PubMed ID: 18032564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural correlates of flight loss in a Mexican grasshopper, Barytettix psolus. I. Motor and sensory cells.
    Arbas EA
    J Comp Neurol; 1983 Jun; 216(4):369-80. PubMed ID: 6308070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wing hair sensilla underlying aimed hindleg scratching of the locust.
    Page KL; Matheson T
    J Exp Biol; 2004 Jul; 207(Pt 15):2691-703. PubMed ID: 15201302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record.
    Kukalova-Peck J
    J Morphol; 1978 Apr; 156(1):53-125. PubMed ID: 30231597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local control of leg movements and motor patterns during grooming in locusts.
    Berkowitz A; Laurent G
    J Neurosci; 1996 Dec; 16(24):8067-78. PubMed ID: 8987832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hind wing of the desert locust (Schistocerca gregaria Forskål). III. A finite element analysis of a deployable structure.
    Herbert RC; Young PG; Smith CW; Wootton RJ; Evans KE
    J Exp Biol; 2000 Oct; 203(Pt 19):2945-55. PubMed ID: 10976031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hindleg targeting during scratching in the locust.
    Matheson T
    J Exp Biol; 1997; 200(Pt 1):93-100. PubMed ID: 9317404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hind wing of the desert locust (Schistocerca gregaria Forskål). II. Mechanical properties and functioning of the membrane.
    Smith CW; Herbert R; Wootton RJ; Evans KE
    J Exp Biol; 2000 Oct; 203(Pt 19):2933-43. PubMed ID: 10976030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue of insect cuticle.
    Dirks JH; Parle E; Taylor D
    J Exp Biol; 2013 May; 216(Pt 10):1924-7. PubMed ID: 23393276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leg regeneration stunts wing growth and hinders flight performance in a stick insect (Sipyloidea sipylus).
    Maginnis TL
    Proc Biol Sci; 2006 Jul; 273(1595):1811-4. PubMed ID: 16790415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional recovery of aimed scratching movements after a graded proprioceptive manipulation.
    Page KL; Matheson T
    J Neurosci; 2009 Mar; 29(12):3897-907. PubMed ID: 19321786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanics of elevation control in locust jumping.
    Sutton GP; Burrows M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Jun; 194(6):557-63. PubMed ID: 18373101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor patterns during kicking movements in the locust.
    Burrows M
    J Comp Physiol A; 1995 Mar; 176(3):289-305. PubMed ID: 7707268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of wing pronation in evasive steering of locusts.
    Ribak G; Rand D; Weihs D; Ayali A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Jul; 198(7):541-55. PubMed ID: 22547148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.