These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31350363)

  • 1. Characterization of Maize Phytochrome-Interacting Factors in Light Signaling and Photomorphogenesis.
    Wu G; Zhao Y; Shen R; Wang B; Xie Y; Ma X; Zheng Z; Wang H
    Plant Physiol; 2019 Oct; 181(2):789-803. PubMed ID: 31350363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Characterization of the Maize Phytochrome-Interacting Factors PIF4 and PIF5.
    Shi Q; Zhang H; Song X; Jiang Y; Liang R; Li G
    Front Plant Sci; 2017; 8():2273. PubMed ID: 29403515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-mediated knockout and overexpression studies reveal a role of maize phytochrome C in regulating flowering time and plant height.
    Li Q; Wu G; Zhao Y; Wang B; Zhao B; Kong D; Wei H; Chen C; Wang H
    Plant Biotechnol J; 2020 Dec; 18(12):2520-2532. PubMed ID: 32531863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytochrome signaling in green Arabidopsis seedlings: impact assessment of a mutually negative phyB-PIF feedback loop.
    Leivar P; Monte E; Cohn MM; Quail PH
    Mol Plant; 2012 May; 5(3):734-49. PubMed ID: 22492120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maize WRKY28 interacts with the DELLA protein D8 to affect skotomorphogenesis and participates in the regulation of shade avoidance and plant architecture.
    Zhang Z; Chen L; Yu J
    J Exp Bot; 2023 May; 74(10):3122-3141. PubMed ID: 36884355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary divergence of phytochrome protein function in Zea mays PIF3 signaling.
    Kumar I; Swaminathan K; Hudson K; Hudson ME
    J Exp Bot; 2016 Jul; 67(14):4231-40. PubMed ID: 27262126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory modules controlling early shade avoidance response in maize seedlings.
    Wang H; Wu G; Zhao B; Wang B; Lang Z; Zhang C; Wang H
    BMC Genomics; 2016 Mar; 17():269. PubMed ID: 27030359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maize ZmWRKY28: a target to regulate shade avoidance response under high planting density.
    Islam NS
    J Exp Bot; 2023 May; 74(10):2937-2939. PubMed ID: 37208831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convergence of CONSTITUTIVE PHOTOMORPHOGENESIS 1 and PHYTOCHROME INTERACTING FACTOR signalling during shade avoidance.
    Pacín M; Semmoloni M; Legris M; Finlayson SA; Casal JJ
    New Phytol; 2016 Aug; 211(3):967-79. PubMed ID: 27105120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic antagonism between phytochromes and PIF family basic helix-loop-helix factors induces selective reciprocal responses to light and shade in a rapidly responsive transcriptional network in Arabidopsis.
    Leivar P; Tepperman JM; Cohn MM; Monte E; Al-Sady B; Erickson E; Quail PH
    Plant Cell; 2012 Apr; 24(4):1398-419. PubMed ID: 22517317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors.
    Lorrain S; Allen T; Duek PD; Whitelam GC; Fankhauser C
    Plant J; 2008 Jan; 53(2):312-23. PubMed ID: 18047474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arabidopsis DE-ETIOLATED1 represses photomorphogenesis by positively regulating phytochrome-interacting factors in the dark.
    Dong J; Tang D; Gao Z; Yu R; Li K; He H; Terzaghi W; Deng XW; Chen H
    Plant Cell; 2014 Sep; 26(9):3630-45. PubMed ID: 25248553
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Yu X; Dong J; Deng Z; Jiang Y; Wu C; Qin X; Terzaghi W; Chen H; Dai M; Deng XW
    Proc Natl Acad Sci U S A; 2019 Oct; 116(40):20218-20225. PubMed ID: 31527236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neighbour signals perceived by phytochrome B increase thermotolerance in Arabidopsis.
    Arico D; Legris M; Castro L; Garcia CF; Laino A; Casal JJ; Mazzella MA
    Plant Cell Environ; 2019 Sep; 42(9):2554-2566. PubMed ID: 31069808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blue light induces degradation of the negative regulator phytochrome interacting factor 1 to promote photomorphogenic development of Arabidopsis seedlings.
    Castillon A; Shen H; Huq E
    Genetics; 2009 May; 182(1):161-71. PubMed ID: 19255368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis.
    Lozano-Juste J; León J
    Plant Physiol; 2011 Jul; 156(3):1410-23. PubMed ID: 21562334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Participation of miR165a in the Phytochrome Signal Transduction in Maize (
    Fedorin DN; Eprintsev AT; Chuykova VO; Igamberdiev AU
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TOPP4 Regulates the Stability of PHYTOCHROME INTERACTING FACTOR5 during Photomorphogenesis in Arabidopsis.
    Yue J; Qin Q; Meng S; Jing H; Gou X; Li J; Hou S
    Plant Physiol; 2016 Mar; 170(3):1381-97. PubMed ID: 26704640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting SPL genes to improve maize plant architecture tailored for high-density planting.
    Wei H; Zhao Y; Xie Y; Wang H
    J Exp Bot; 2018 Sep; 69(20):4675-4688. PubMed ID: 29992284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The light-response BTB1 and BTB2 proteins assemble nuclear ubiquitin ligases that modify phytochrome B and D signaling in Arabidopsis.
    Christians MJ; Gingerich DJ; Hua Z; Lauer TD; Vierstra RD
    Plant Physiol; 2012 Sep; 160(1):118-34. PubMed ID: 22732244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.