These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 31350397)

  • 21. Molecular polaritons for controlling chemistry with quantum optics.
    Herrera F; Owrutsky J
    J Chem Phys; 2020 Mar; 152(10):100902. PubMed ID: 32171209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dipolar coupling of nanoparticle-molecule assemblies: An efficient approach for studying strong coupling.
    Fojt J; Rossi TP; Antosiewicz TJ; Kuisma M; Erhart P
    J Chem Phys; 2021 Mar; 154(9):094109. PubMed ID: 33685155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A perspective on ab initio modeling of polaritonic chemistry: The role of non-equilibrium effects and quantum collectivity.
    Sidler D; Ruggenthaler M; Schäfer C; Ronca E; Rubio A
    J Chem Phys; 2022 Jun; 156(23):230901. PubMed ID: 35732522
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polaritonic Chemistry from First Principles via Embedding Radiation Reaction.
    Schäfer C
    J Phys Chem Lett; 2022 Aug; 13(30):6905-6911. PubMed ID: 35866694
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strong coupling between localized and propagating plasmon polaritons.
    Balci S; Karademir E; Kocabas C
    Opt Lett; 2015 Jul; 40(13):3177-80. PubMed ID: 26125396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Collective strong coupling in a plasmonic nanocavity.
    Varguet H; Díaz-Valles AA; Guérin S; Jauslin HR; Colas des Francs G
    J Chem Phys; 2021 Feb; 154(8):084303. PubMed ID: 33639753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Defect Polaritons from First Principles.
    Wang DS; Yelin SF; Flick J
    ACS Nano; 2021 Sep; 15(9):15142-15152. PubMed ID: 34459200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strong coupling between surface plasmon polaritons and emitters: a review.
    Törmä P; Barnes WL
    Rep Prog Phys; 2015 Jan; 78(1):013901. PubMed ID: 25536670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Waveguide-coupled single collective excitation of atomic arrays.
    Corzo NV; Raskop J; Chandra A; Sheremet AS; Gouraud B; Laurat J
    Nature; 2019 Feb; 566(7744):359-362. PubMed ID: 30718773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrastrong coupling of CdZnS/ZnS quantum dots to bonding breathing plasmons of aluminum metal-insulator-metal nanocavities in near-ultraviolet spectrum.
    Li L; Wang L; Du C; Guan Z; Xiang Y; Wu W; Ren M; Zhang X; Tang A; Cai W; Xu J
    Nanoscale; 2020 Feb; 12(5):3112-3120. PubMed ID: 31965128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons.
    Leng H; Szychowski B; Daniel MC; Pelton M
    Nat Commun; 2018 Oct; 9(1):4012. PubMed ID: 30275446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum Yield of Polariton Emission from Hybrid Light-Matter States.
    Wang S; Chervy T; George J; Hutchison JA; Genet C; Ebbesen TW
    J Phys Chem Lett; 2014 Apr; 5(8):1433-9. PubMed ID: 26269990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strong plasmon-exciton coupling between lithographically defined single metal nanoparticles and monolayer WSe
    Yan X; Wei H
    Nanoscale; 2020 May; 12(17):9708-9716. PubMed ID: 32323700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strongly coupled slow-light polaritons in one-dimensional disordered localized states.
    Gao J; Combrie S; Liang B; Schmitteckert P; Lehoucq G; Xavier S; Xu X; Busch K; Huffaker DL; De Rossi A; Wong CW
    Sci Rep; 2013; 3():1994. PubMed ID: 23771242
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays.
    Wang H; Toma A; Wang HY; Bozzola A; Miele E; Haddadpour A; Veronis G; De Angelis F; Wang L; Chen QD; Xu HL; Sun HB; Zaccaria RP
    Nanoscale; 2016 Jul; 8(27):13445-53. PubMed ID: 27350590
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strong Coupling between Localized Surface Plasmons and Molecules by Coupled Cluster Theory.
    Fregoni J; Haugland TS; Pipolo S; Giovannini T; Koch H; Corni S
    Nano Lett; 2021 Aug; 21(15):6664-6670. PubMed ID: 34283614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compounding Plasmon⁻Exciton Strong Coupling System with Gold Nanofilm to Boost Rabi Splitting.
    Song T; Chen Z; Zhang W; Lin L; Bao Y; Wu L; Zhou ZK
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30959968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ab Initio Linear-Response Approach to Vibro-Polaritons in the Cavity Born-Oppenheimer Approximation.
    Bonini J; Flick J
    J Chem Theory Comput; 2022 May; 18(5):2764-2773. PubMed ID: 35404591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-Molecule Vacuum Rabi Splitting: Four-Wave Mixing and Optical Switching at the Single-Photon Level.
    Pscherer A; Meierhofer M; Wang D; Kelkar H; Martín-Cano D; Utikal T; Götzinger S; Sandoghdar V
    Phys Rev Lett; 2021 Sep; 127(13):133603. PubMed ID: 34623836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.