These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31350398)

  • 1. Spiculogenesis and biomineralization in early sponge animals.
    Tang Q; Wan B; Yuan X; Muscente AD; Xiao S
    Nat Commun; 2019 Jul; 10(1):3348. PubMed ID: 31350398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A late-Ediacaran crown-group sponge animal.
    Wang X; Liu AG; Chen Z; Wu C; Liu Y; Wan B; Pang K; Zhou C; Yuan X; Xiao S
    Nature; 2024 Jun; 630(8018):905-911. PubMed ID: 38839967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Where's the glass? Biomarkers, molecular clocks, and microRNAs suggest a 200-Myr missing Precambrian fossil record of siliceous sponge spicules.
    Sperling EA; Robinson JM; Pisani D; Peterson KJ
    Geobiology; 2010 Jan; 8(1):24-36. PubMed ID: 19929965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giving the early fossil record of sponges a squeeze.
    Antcliffe JB; Callow RH; Brasier MD
    Biol Rev Camb Philos Soc; 2014 Nov; 89(4):972-1004. PubMed ID: 24779547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Middle and Late Cambrian sponge spicules from Hunan, China.
    Xiping D; Knoll AH
    J Paleontol; 1996 Mar; 70(2):173-84. PubMed ID: 11539394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Siliceous spicules in a vauxiid sponge (Demospongia) from the Kaili Biota(Cambrian Stage 5), Guizhou, South China.
    Yang XL; Zhao YL; Babcock LE; Peng J
    Sci Rep; 2017 Feb; 7():42945. PubMed ID: 28220860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions.
    Uriz MJ; Turon X; Becerro MA; Agell G
    Microsc Res Tech; 2003 Nov; 62(4):279-99. PubMed ID: 14534903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spiculogenesis in the siliceous sponge Lubomirskia baicalensis studied with fluorescent staining.
    Annenkov VV; Danilovtseva EN
    J Struct Biol; 2016 Apr; 194(1):29-37. PubMed ID: 26821342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of missing link between demosponges and hexactinellids confirms palaeontological model of sponge evolution.
    Botting JP; Zhang Y; Muir LA
    Sci Rep; 2017 Jul; 7(1):5286. PubMed ID: 28706211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The unique invention of the siliceous sponges: their enzymatically made bio-silica skeleton.
    Müller WE; Wang X; Chen A; Hu S; Gan L; Schröder HC; Schloßmacher U; Wiens M
    Prog Mol Subcell Biol; 2011; 52():251-81. PubMed ID: 21877269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials.
    Müller WE; Wang X; Cui FZ; Jochum KP; Tremel W; Bill J; Schröder HC; Natalio F; Schlossmacher U; Wiens M
    Appl Microbiol Biotechnol; 2009 Jun; 83(3):397-413. PubMed ID: 19430775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicateins, silicatein interactors and cellular interplay in sponge skeletogenesis: formation of glass fiber-like spicules.
    Wang X; Schloßmacher U; Wiens M; Batel R; Schröder HC; Müller WE
    FEBS J; 2012 May; 279(10):1721-36. PubMed ID: 22340505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbonaceous preservation of Cambrian hexactinellid sponge spicules.
    Harvey TH
    Biol Lett; 2010 Dec; 6(6):834-7. PubMed ID: 20554559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The terminology of sponge spicules.
    Łukowiak M; Van Soest R; Klautau M; Pérez T; Pisera A; Tabachnick K
    J Morphol; 2022 Dec; 283(12):1517-1545. PubMed ID: 36208470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A synthetic biology approach for the fabrication of functional (fluorescent magnetic) bioorganic-inorganic hybrid materials in sponge primmorphs.
    Markl JS; Müller WEG; Sereno D; Elkhooly TA; Kokkinopoulou M; Gardères J; Depoix F; Wiens M
    Biotechnol Bioeng; 2020 Jun; 117(6):1789-1804. PubMed ID: 32068251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica.
    Müller WE; Boreiko A; Schlossmacher U; Wang X; Tahir MN; Tremel W; Brandt D; Kaandorp JA; Schröder HC
    Biomaterials; 2007 Oct; 28(30):4501-11. PubMed ID: 17628661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Siliceous spicules in marine demosponges (example Suberites domuncula).
    Müller WE; Belikov SI; Tremel W; Perry CC; Gieskes WW; Boreiko A; Schröder HC
    Micron; 2006; 37(2):107-20. PubMed ID: 16242342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Luciferase a light source for the silica-based optical waveguides (spicules) in the demosponge Suberites domuncula.
    Müller WE; Kasueske M; Wang X; Schröder HC; Wang Y; Pisignano D; Wiens M
    Cell Mol Life Sci; 2009 Feb; 66(3):537-52. PubMed ID: 19151920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructing early sponge relationships by using the Burgess Shale fossil Eiffelia globosa, Walcott.
    Botting JP; Butterfield NJ
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1554-9. PubMed ID: 15665105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of spiculogenesis in demosponge and hexactinellid larvae.
    Leys SP
    Microsc Res Tech; 2003 Nov; 62(4):300-11. PubMed ID: 14534904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.