These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 31350441)

  • 1. Performance of a glucose-reactive enzyme-based biofuel cell system for biomedical applications.
    Jeon WY; Lee JH; Dashnyam K; Choi YB; Kim TH; Lee HH; Kim HW; Kim HH
    Sci Rep; 2019 Jul; 9(1):10872. PubMed ID: 31350441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement.
    Babadi AA; Bagheri S; Hamid SB
    Biosens Bioelectron; 2016 May; 79():850-60. PubMed ID: 26785309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofuel cells based on direct enzyme-electrode contacts using PQQ-dependent glucose dehydrogenase/bilirubin oxidase and modified carbon nanotube materials.
    Scherbahn V; Putze MT; Dietzel B; Heinlein T; Schneider JJ; Lisdat F
    Biosens Bioelectron; 2014 Nov; 61():631-8. PubMed ID: 24967753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of high performance bioanode based on fruitful association of dendrimer and carbon nanotube used for design O2/glucose membrane-less biofuel cell with improved bilirubine oxidase biocathode.
    Korani A; Salimi A
    Biosens Bioelectron; 2013 Dec; 50():186-93. PubMed ID: 23850787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An implantable biofuel cell for a live insect.
    Rasmussen M; Ritzmann RE; Lee I; Pollack AJ; Scherson D
    J Am Chem Soc; 2012 Jan; 134(3):1458-60. PubMed ID: 22239249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A disposable enzymatic biofuel cell for glucose sensing via short-circuit current.
    Morshed J; Hossain MM; Zebda A; Tsujimura S
    Biosens Bioelectron; 2023 Jun; 230():115272. PubMed ID: 37023550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A membraneless starch/O
    Cai Y; Wang M; Xiao X; Liang B; Fan S; Zheng Z; Cosnier S; Liu A
    Biosens Bioelectron; 2022 Jul; 207():114197. PubMed ID: 35358946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-powered competitive immunosensor driven by biofuel cell based on hollow-channel paper analytical devices.
    Li S; Wang Y; Ge S; Yu J; Yan M
    Biosens Bioelectron; 2015 Sep; 71():18-24. PubMed ID: 25880834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement.
    Milton RD; Giroud F; Thumser AE; Minteer SD; Slade RC
    Phys Chem Chem Phys; 2013 Nov; 15(44):19371-9. PubMed ID: 24121716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane/mediator-free rechargeable enzymatic biofuel cell utilizing graphene/single-wall carbon nanotube cogel electrodes.
    Campbell AS; Jeong YJ; Geier SM; Koepsel RR; Russell AJ; Islam MF
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4056-65. PubMed ID: 25643030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A self-powered glucose biosensor based on pyrolloquinoline quinone glucose dehydrogenase and bilirubin oxidase operating under physiological conditions.
    Kulkarni T; Slaughter G
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():5-8. PubMed ID: 29059797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Microelectronic Sensor Device Powered by a Small Implantable Biofuel Cell.
    Bollella P; Lee I; Blaauw D; Katz E
    Chemphyschem; 2020 Jan; 21(1):120-128. PubMed ID: 31408568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From fundamentals to applications of bioelectrocatalysis: bioelectrocatalytic reactions of FAD-dependent glucose dehydrogenase and bilirubin oxidase.
    Tsujimura S
    Biosci Biotechnol Biochem; 2019 Jan; 83(1):39-48. PubMed ID: 30274547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From dynamic measurements of photosynthesis in a living plant to sunlight transformation into electricity.
    Flexer V; Mano N
    Anal Chem; 2010 Feb; 82(4):1444-9. PubMed ID: 20102223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling of an enzymatic biofuel cell to an electrochemical cell for self-powered glucose sensing with optical readout.
    Pinyou P; Conzuelo F; Sliozberg K; Vivekananthan J; Contin A; Pöller S; Plumeré N; Schuhmann W
    Bioelectrochemistry; 2015 Dec; 106(Pt A):22-7. PubMed ID: 25892686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wiring of bilirubin oxidases with redox polymers on gas diffusion electrodes for increased stability of self-powered biofuel cells-based glucose sensing.
    Becker JM; Lielpetere A; Szczesny J; Bichon S; Gounel S; Mano N; Schuhmann W
    Bioelectrochemistry; 2023 Feb; 149():108314. PubMed ID: 36335789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated, electrically contacted NAD(P)+-dependent enzyme-carbon nanotube electrodes for biosensors and biofuel cell applications.
    Yan YM; Yehezkeli O; Willner I
    Chemistry; 2007; 13(36):10168-75. PubMed ID: 17937376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mediatorless glucose biosensor and direct electron transfer type glucose/air biofuel cell enabled with carbon nanodots.
    Zhao M; Gao Y; Sun J; Gao F
    Anal Chem; 2015 Mar; 87(5):2615-22. PubMed ID: 25666266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Shades of grays for implanting an enzymatic biofuel cell].
    Alcaraz JP; Ichi-Ribault SE; Cortella L; Guimier-Pingault C; Zebda A; Cinquin P; Martin DK
    Med Sci (Paris); 2016 8-9; 32(8-9):771-3. PubMed ID: 27615187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Employing FAD-dependent glucose dehydrogenase within a glucose/oxygen enzymatic fuel cell operating in human serum.
    Milton RD; Lim K; Hickey DP; Minteer SD
    Bioelectrochemistry; 2015 Dec; 106(Pt A):56-63. PubMed ID: 25890695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.