These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 31350445)
1. A Statistical Test for Differential Network Analysis Based on Inference of Gaussian Graphical Model. He H; Cao S; Zhang JG; Shen H; Wang YP; Deng HW Sci Rep; 2019 Jul; 9(1):10863. PubMed ID: 31350445 [TBL] [Abstract][Full Text] [Related]
2. SILGGM: An extensive R package for efficient statistical inference in large-scale gene networks. Zhang R; Ren Z; Chen W PLoS Comput Biol; 2018 Aug; 14(8):e1006369. PubMed ID: 30102702 [TBL] [Abstract][Full Text] [Related]
3. FastGGM: An Efficient Algorithm for the Inference of Gaussian Graphical Model in Biological Networks. Wang T; Ren Z; Ding Y; Fang Z; Sun Z; MacDonald ML; Sweet RA; Wang J; Chen W PLoS Comput Biol; 2016 Feb; 12(2):e1004755. PubMed ID: 26872036 [TBL] [Abstract][Full Text] [Related]
5. A new insight into underlying disease mechanism through semi-parametric latent differential network model. He Y; Ji J; Xie L; Zhang X; Xue F BMC Bioinformatics; 2018 Dec; 19(Suppl 17):493. PubMed ID: 30591011 [TBL] [Abstract][Full Text] [Related]
6. Information-incorporated Gaussian graphical model for gene expression data. Yi H; Zhang Q; Lin C; Ma S Biometrics; 2022 Jun; 78(2):512-523. PubMed ID: 33527365 [TBL] [Abstract][Full Text] [Related]
7. Predictions of the dysregulated competing endogenous RNA signature involved in the progression of human lung adenocarcinoma. Yang D; He Y; Wu B; Liu R; Wang N; Wang T; Luo Y; Li Y; Liu Y Cancer Biomark; 2020; 29(3):399-416. PubMed ID: 32741804 [TBL] [Abstract][Full Text] [Related]
8. Comparative analysis of false discovery rate methods in constructing metabolic association networks. Koo I; Yao S; Zhang X; Kim S J Bioinform Comput Biol; 2014 Aug; 12(4):1450018. PubMed ID: 25152043 [TBL] [Abstract][Full Text] [Related]
9. Incorporating prior information into differential network analysis using non-paranormal graphical models. Zhang XF; Ou-Yang L; Yan H Bioinformatics; 2017 Aug; 33(16):2436-2445. PubMed ID: 28407042 [TBL] [Abstract][Full Text] [Related]
10. A Multiattribute Gaussian Graphical Model for Inferring Multiscale Regulatory Networks: An Application in Breast Cancer. Chiquet J; Rigaill G; Sundqvist M Methods Mol Biol; 2019; 1883():143-160. PubMed ID: 30547399 [TBL] [Abstract][Full Text] [Related]
11. An Integrated Approach of Learning Genetic Networks From Genome-Wide Gene Expression Data Using Gaussian Graphical Model and Monte Carlo Method. Zhao H; Datta S; Duan ZH Bioinform Biol Insights; 2023; 17():11779322231152972. PubMed ID: 36865982 [TBL] [Abstract][Full Text] [Related]
12. Identification of target gene and prognostic evaluation for lung adenocarcinoma using gene expression meta-analysis, network analysis and neural network algorithms. Selvaraj G; Kaliamurthi S; Kaushik AC; Khan A; Wei YK; Cho WC; Gu K; Wei DQ J Biomed Inform; 2018 Oct; 86():120-134. PubMed ID: 30195659 [TBL] [Abstract][Full Text] [Related]
13. Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO. Zuo Y; Cui Y; Yu G; Li R; Ressom HW BMC Bioinformatics; 2017 Feb; 18(1):99. PubMed ID: 28187708 [TBL] [Abstract][Full Text] [Related]
14. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data. Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796 [TBL] [Abstract][Full Text] [Related]
15. Efficient proximal gradient algorithm for inference of differential gene networks. Wang C; Gao F; Giannakis GB; D'Urso G; Cai X BMC Bioinformatics; 2019 May; 20(1):224. PubMed ID: 31046666 [TBL] [Abstract][Full Text] [Related]
17. Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data. Shimamura T; Imoto S; Yamaguchi R; Miyano S Genome Inform; 2007; 19():142-53. PubMed ID: 18546512 [TBL] [Abstract][Full Text] [Related]
18. An integrated approach to infer dynamic protein-gene interactions - A case study of the human P53 protein. Wang J; Wu Q; Hu XT; Tian T Methods; 2016 Nov; 110():3-13. PubMed ID: 27514497 [TBL] [Abstract][Full Text] [Related]
19. A boosting approach to structure learning of graphs with and without prior knowledge. Anjum S; Doucet A; Holmes CC Bioinformatics; 2009 Nov; 25(22):2929-36. PubMed ID: 19696047 [TBL] [Abstract][Full Text] [Related]
20. Node-based learning of differential networks from multi-platform gene expression data. Ou-Yang L; Zhang XF; Wu M; Li XL Methods; 2017 Oct; 129():41-49. PubMed ID: 28579401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]