BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 31351028)

  • 1. Homolog comparisons further reconcile in vitro and in vivo correlations of protein activities by revealing over-looked physiological factors.
    Tungtur S; Schwingen KM; Riepe JJ; Weeramange CJ; Swint-Kruse L
    Protein Sci; 2019 Oct; 28(10):1806-1818. PubMed ID: 31351028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel insights from hybrid LacI/GalR proteins: family-wide functional attributes and biologically significant variation in transcription repression.
    Meinhardt S; Manley MW; Becker NA; Hessman JA; Maher LJ; Swint-Kruse L
    Nucleic Acids Res; 2012 Nov; 40(21):11139-54. PubMed ID: 22965134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo tests of thermodynamic models of transcription repressor function.
    Tungtur S; Skinner H; Zhan H; Swint-Kruse L; Beckett D
    Biophys Chem; 2011 Nov; 159(1):142-51. PubMed ID: 21715082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of in-vivo LacR-mediated gene repression based on the mechanics of DNA looping.
    Zhang Y; McEwen AE; Crothers DM; Levene SD
    PLoS One; 2006 Dec; 1(1):e136. PubMed ID: 17205140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteins mediating DNA loops effectively block transcription.
    Vörös Z; Yan Y; Kovari DT; Finzi L; Dunlap D
    Protein Sci; 2017 Jul; 26(7):1427-1438. PubMed ID: 28295806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The loopometer: a quantitative in vivo assay for DNA-looping proteins.
    Hao N; Sullivan AE; Shearwin KE; Dodd IB
    Nucleic Acids Res; 2021 Apr; 49(7):e39. PubMed ID: 33511418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operator search by mutant Lac repressors.
    Barker A; Fickert R; Oehler S; Müller-hill B
    J Mol Biol; 1998 May; 278(3):549-58. PubMed ID: 9600838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LacI-DNA-IPTG loops: equilibria among conformations by single-molecule FRET.
    Goodson KA; Wang Z; Haeusler AR; Kahn JD; English DS
    J Phys Chem B; 2013 Apr; 117(16):4713-22. PubMed ID: 23406418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay of protein and DNA structure revealed in simulations of the lac operon.
    Czapla L; Grosner MA; Swigon D; Olson WK
    PLoS One; 2013; 8(2):e56548. PubMed ID: 23457581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tethered particle motion reveals that LacI·DNA loops coexist with a competitor-resistant but apparently unlooped conformation.
    Revalee JD; Blab GA; Wilson HD; Kahn JD; Meiners JC
    Biophys J; 2014 Feb; 106(3):705-15. PubMed ID: 24507611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct observation of a 91 bp LacI-mediated, negatively supercoiled DNA loop by atomic force microscope.
    Fulcrand G; Chapagain P; Dunlap D; Leng F
    FEBS Lett; 2016 Mar; 590(5):613-8. PubMed ID: 26878689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial promoter repression by DNA looping without protein-protein binding competition.
    Becker NA; Greiner AM; Peters JP; Maher LJ
    Nucleic Acids Res; 2014 May; 42(9):5495-504. PubMed ID: 24598256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative and anticooperative effects in binding of the first and second plasmid Osym operators to a LacI tetramer: evidence for contributions of non-operator DNA binding by wrapping and looping.
    Levandoski MM; Tsodikov OV; Frank DE; Melcher SE; Saecker RM; Record MT
    J Mol Biol; 1996 Aug; 260(5):697-717. PubMed ID: 8709149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altering residues N125 and D149 impacts sugar effector binding and allosteric parameters in Escherichia coli lactose repressor.
    Xu J; Liu S; Chen M; Ma J; Matthews KS
    Biochemistry; 2011 Oct; 50(42):9002-13. PubMed ID: 21928765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of the Escherichia coli transcription activator and regulator of diauxie, XylR: an AraC DNA-binding family member with a LacI/GalR ligand-binding domain.
    Ni L; Tonthat NK; Chinnam N; Schumacher MA
    Nucleic Acids Res; 2013 Feb; 41(3):1998-2008. PubMed ID: 23241389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel evolution of ligand specificity between LacI/GalR family repressors and periplasmic sugar-binding proteins.
    Fukami-Kobayashi K; Tateno Y; Nishikawa K
    Mol Biol Evol; 2003 Feb; 20(2):267-77. PubMed ID: 12598694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-guided approach to site-specific fluorophore labeling of the lac repressor LacI.
    Kipper K; Eremina N; Marklund E; Tubasum S; Mao G; Lehmann LC; Elf J; Deindl S
    PLoS One; 2018; 13(6):e0198416. PubMed ID: 29856839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental identification of specificity determinants in the domain linker of a LacI/GalR protein: bioinformatics-based predictions generate true positives and false negatives.
    Meinhardt S; Swint-Kruse L
    Proteins; 2008 Dec; 73(4):941-57. PubMed ID: 18536016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetramer opening in LacI-mediated DNA looping.
    Rutkauskas D; Zhan H; Matthews KS; Pavone FS; Vanzi F
    Proc Natl Acad Sci U S A; 2009 Sep; 106(39):16627-32. PubMed ID: 19805348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the sequence-function relationship in transcriptional regulation by the lac O1 operator.
    Maity TS; Jha RK; Strauss CE; Dunbar J
    FEBS J; 2012 Jul; 279(14):2534-43. PubMed ID: 22594825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.