These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 31351152)
41. FAD analogues as prosthetic groups of human glutathione reductase. Properties of the modified enzyme species and comparisons with the active site structure. Krauth-Siegel RL; Schirmer RH; Ghisla S Eur J Biochem; 1985 Apr; 148(2):335-44. PubMed ID: 3987692 [TBL] [Abstract][Full Text] [Related]
42. Over-expression in Escherichia coli and characterization of two recombinant isoforms of human FAD synthetase. Brizio C; Galluccio M; Wait R; Torchetti EM; Bafunno V; Accardi R; Gianazza E; Indiveri C; Barile M Biochem Biophys Res Commun; 2006 Jun; 344(3):1008-16. PubMed ID: 16643857 [TBL] [Abstract][Full Text] [Related]
43. miR-17 is involved in the regulation of LC-PUFA biosynthesis in vertebrates: effects on liver expression of a fatty acyl desaturase in the marine teleost Siganus canaliculatus. Zhang Q; Xie D; Wang S; You C; Monroig O; Tocher DR; Li Y Biochim Biophys Acta; 2014 Jul; 1841(7):934-43. PubMed ID: 24681164 [TBL] [Abstract][Full Text] [Related]
44. Glutathione reductase from human erythrocytes: amino-acid sequence of the structurally known FAD-binding domain. Untucht-Grau R; Schirmer RH; Schirmer I; Krauth-Siegel RL Eur J Biochem; 1981 Nov; 120(2):407-19. PubMed ID: 7032915 [TBL] [Abstract][Full Text] [Related]
45. NMR structure of the flavin domain from soluble methane monooxygenase reductase from Methylococcus capsulatus (Bath). Chatwood LL; Müller J; Gross JD; Wagner G; Lippard SJ Biochemistry; 2004 Sep; 43(38):11983-91. PubMed ID: 15379538 [TBL] [Abstract][Full Text] [Related]
46. Importance of the domain-domain interface to the catalytic action of the NO synthase reductase domain. Welland A; Garnaud PE; Kitamura M; Miles CS; Daff S Biochemistry; 2008 Sep; 47(37):9771-80. PubMed ID: 18717591 [TBL] [Abstract][Full Text] [Related]
47. Purification and characterisation of the NADH:acceptor reductase component of xylene monooxygenase encoded by the TOL plasmid pWW0 of Pseudomonas putida mt-2. Shaw JP; Harayama S Eur J Biochem; 1992 Oct; 209(1):51-61. PubMed ID: 1327782 [TBL] [Abstract][Full Text] [Related]
48. Folate activation and catalysis in methylenetetrahydrofolate reductase from Escherichia coli: roles for aspartate 120 and glutamate 28. Trimmer EE; Ballou DP; Ludwig ML; Matthews RG Biochemistry; 2001 May; 40(21):6216-26. PubMed ID: 11371182 [TBL] [Abstract][Full Text] [Related]
50. The interaction between lipoamide dehydrogenase and the peripheral-component-binding domain from the Azotobacter vinelandii pyruvate dehydrogenase complex. Westphal AH; Fabisz-Kijowska A; Kester H; Obels PP; de Kok A Eur J Biochem; 1995 Dec; 234(3):861-70. PubMed ID: 8575446 [TBL] [Abstract][Full Text] [Related]
51. Single amino acid exchanges in FAD-binding domains of squalene epoxidase of Saccharomyces cerevisiae lead to either loss of functionality or terbinafine sensitivity. Ruckenstuhl C; Eidenberger A; Lang S; Turnowsky F Biochem Soc Trans; 2005 Nov; 33(Pt 5):1197-201. PubMed ID: 16246080 [TBL] [Abstract][Full Text] [Related]
52. The lipoamide dehydrogenase from Mycobacterium tuberculosis permits the direct observation of flavin intermediates in catalysis. Argyrou A; Blanchard JS; Palfey BA Biochemistry; 2002 Dec; 41(49):14580-90. PubMed ID: 12463758 [TBL] [Abstract][Full Text] [Related]
53. Characterization of the mechanism of the NADH-dependent polysulfide reductase (Npsr) from Shewanella loihica PV-4: formation of a productive NADH-enzyme complex and its role in the general mechanism of NADH and FAD-dependent enzymes. Lee KH; Humbarger S; Bahnvadia R; Sazinsky MH; Crane EJ Biochim Biophys Acta; 2014 Sep; 1844(9):1708-17. PubMed ID: 24981797 [TBL] [Abstract][Full Text] [Related]
54. Production, purification, and characterization of a Mg2+-responsive porphobilinogen synthase from Pseudomonas aeruginosa. Frankenberg N; Heinz DW; Jahn D Biochemistry; 1999 Oct; 38(42):13968-75. PubMed ID: 10529243 [TBL] [Abstract][Full Text] [Related]
55. Cytochrome b5 reductase: the roles of the recessive congenital methemoglobinemia mutants P144L, L148P, and R159*. Davis CA; Crowley LJ; Barber MJ Arch Biochem Biophys; 2004 Nov; 431(2):233-44. PubMed ID: 15488472 [TBL] [Abstract][Full Text] [Related]
56. Identification of the domains of neuronal nitric oxide synthase by limited proteolysis. Lowe PN; Smith D; Stammers DK; Riveros-Moreno V; Moncada S; Charles I; Boyhan A Biochem J; 1996 Feb; 314 ( Pt 1)(Pt 1):55-62. PubMed ID: 8660310 [TBL] [Abstract][Full Text] [Related]
57. Control of electron transfer in neuronal NO synthase. Daff S; Noble MA; Craig DH; Rivers SL; Chapman SK; Munro AW; Fujiwara S; Rozhkova E; Sagami I; Shimizu T Biochem Soc Trans; 2001 May; 29(Pt 2):147-52. PubMed ID: 11356143 [TBL] [Abstract][Full Text] [Related]
58. NADPH-cytochrome c reductase from human neutrophil membranes: purification, characterization and localization. Nisimoto Y; Otsuka-Murakami H; Iwata S Biochem J; 1994 Feb; 297 ( Pt 3)(Pt 3):585-93. PubMed ID: 8110198 [TBL] [Abstract][Full Text] [Related]
59. Biochemical and physical characterization of the active FAD-containing form of nitroalkane oxidase from Fusarium oxysporum. Gadda G; Fitzpatrick PF Biochemistry; 1998 Apr; 37(17):6154-64. PubMed ID: 9558355 [TBL] [Abstract][Full Text] [Related]
60. The crystal structure of phenol hydroxylase in complex with FAD and phenol provides evidence for a concerted conformational change in the enzyme and its cofactor during catalysis. Enroth C; Neujahr H; Schneider G; Lindqvist Y Structure; 1998 May; 6(5):605-17. PubMed ID: 9634698 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]