These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 31351286)
1. Distribution of antibiotic resistance genes in soil amended using Azolla imbricata and its driving mechanisms. Lu XM; Lu PZ Sci Total Environ; 2019 Nov; 692():422-431. PubMed ID: 31351286 [TBL] [Abstract][Full Text] [Related]
2. Fate of microbial pollutants and evolution of antibiotic resistance in three types of soil amended with swine slurry. Sui Q; Zhang J; Chen M; Wang R; Wang Y; Wei Y Environ Pollut; 2019 Feb; 245():353-362. PubMed ID: 30448505 [TBL] [Abstract][Full Text] [Related]
3. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Chen Q; An X; Li H; Su J; Ma Y; Zhu YG Environ Int; 2016; 92-93():1-10. PubMed ID: 27043971 [TBL] [Abstract][Full Text] [Related]
4. Prevalence and dissemination of antibiotic resistance genes and coselection of heavy metals in Chinese dairy farms. Zhou B; Wang C; Zhao Q; Wang Y; Huo M; Wang J; Wang S J Hazard Mater; 2016 Dec; 320():10-17. PubMed ID: 27505289 [TBL] [Abstract][Full Text] [Related]
5. Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Zhang YJ; Hu HW; Gou M; Wang JT; Chen D; He JZ Environ Pollut; 2017 Dec; 231(Pt 2):1621-1632. PubMed ID: 28964602 [TBL] [Abstract][Full Text] [Related]
6. Long-term application of organic fertilization causes the accumulation of antibiotic resistome in earthworm gut microbiota. Ding J; Zhu D; Hong B; Wang HT; Li G; Ma YB; Tang YT; Chen QL Environ Int; 2019 Mar; 124():145-152. PubMed ID: 30641258 [TBL] [Abstract][Full Text] [Related]
7. The distribution and key influential factors of antibiotic resistance genes in agricultural soils polluted by multiple heavy metals. Huang X; Zhao X; Fu L; Yang G; Luo L Environ Geochem Health; 2024 Aug; 46(10):385. PubMed ID: 39167301 [TBL] [Abstract][Full Text] [Related]
8. Field-based evidence for enrichment of antibiotic resistance genes and mobile genetic elements in manure-amended vegetable soils. Zhao X; Wang J; Zhu L; Wang J Sci Total Environ; 2019 Mar; 654():906-913. PubMed ID: 30453260 [TBL] [Abstract][Full Text] [Related]
9. Short-term copper exposure as a selection pressure for antibiotic resistance and metal resistance in an agricultural soil. Kang W; Zhang YJ; Shi X; He JZ; Hu HW Environ Sci Pollut Res Int; 2018 Oct; 25(29):29314-29324. PubMed ID: 30121762 [TBL] [Abstract][Full Text] [Related]
10. The influence of heavy metals, polyaromatic hydrocarbons, and polychlorinated biphenyls pollution on the development of antibiotic resistance in soils. Gorovtsov AV; Sazykin IS; Sazykina MA Environ Sci Pollut Res Int; 2018 Apr; 25(10):9283-9292. PubMed ID: 29453715 [TBL] [Abstract][Full Text] [Related]
11. Changes in bacterial community structure and antibiotic resistance genes in soil in the vicinity of a pharmaceutical factory. Zhu Y; Zhang Q; Xu J; Qu Q; Lu T; Du B; Ke M; Zhang M; Qian H Ecotoxicol Environ Saf; 2018 Aug; 158():87-93. PubMed ID: 29660617 [TBL] [Abstract][Full Text] [Related]
12. Soil types influence the characteristic of antibiotic resistance genes in greenhouse soil with long-term manure application. Wang L; Wang J; Wang J; Zhu L; Conkle JL; Yang R J Hazard Mater; 2020 Jun; 392():122334. PubMed ID: 32092657 [TBL] [Abstract][Full Text] [Related]
13. Different impacts of manure and chemical fertilizers on bacterial community structure and antibiotic resistance genes in arable soils. Liu P; Jia S; He X; Zhang X; Ye L Chemosphere; 2017 Dec; 188():455-464. PubMed ID: 28898777 [TBL] [Abstract][Full Text] [Related]
14. The overlap of soil and vegetable microbes drives the transfer of antibiotic resistance genes from manure-amended soil to vegetables. Wang F; Sun R; Hu H; Duan G; Meng L; Qiao M Sci Total Environ; 2022 Jul; 828():154463. PubMed ID: 35276164 [TBL] [Abstract][Full Text] [Related]
15. Fate of tetracycline and sulfonamide resistance genes in a grassland soil amended with different organic fertilizers. Lin H; Chapman SJ; Freitag TE; Kyle C; Ma J; Yang Y; Zhang Z Ecotoxicol Environ Saf; 2019 Apr; 170():39-46. PubMed ID: 30513413 [TBL] [Abstract][Full Text] [Related]
16. Application of sewage sludge to agricultural soil increases the abundance of antibiotic resistance genes without altering the composition of prokaryotic communities. Urra J; Alkorta I; Mijangos I; Epelde L; Garbisu C Sci Total Environ; 2019 Jan; 647():1410-1420. PubMed ID: 30180347 [TBL] [Abstract][Full Text] [Related]
17. Evolution of microbial communities during electrokinetic treatment of antibiotic-polluted soil. Li H; Li B; Zhang Z; Zhu C; Tian Y; Ye J Ecotoxicol Environ Saf; 2018 Feb; 148():842-850. PubMed ID: 29197799 [TBL] [Abstract][Full Text] [Related]
18. Effect of long-term manure slurry application on the occurrence of antibiotic resistance genes in arable purple soil (entisol). Cheng JH; Tang XY; Cui JF Sci Total Environ; 2019 Jan; 647():853-861. PubMed ID: 30096674 [TBL] [Abstract][Full Text] [Related]
19. Effects of manure and mineral fertilization strategies on soil antibiotic resistance gene levels and microbial community in a paddy-upland rotation system. Lin H; Sun W; Zhang Z; Chapman SJ; Freitag TE; Fu J; Zhang X; Ma J Environ Pollut; 2016 Apr; 211():332-7. PubMed ID: 26774780 [TBL] [Abstract][Full Text] [Related]
20. Composting increased persistence of manure-borne antibiotic resistance genes in soils with different fertilization history. Xu M; Stedtfeld RD; Wang F; Hashsham SA; Song Y; Chuang Y; Fan J; Li H; Jiang X; Tiedje JM Sci Total Environ; 2019 Nov; 689():1172-1180. PubMed ID: 31466157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]