BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 31351319)

  • 1. Structural and binding insights into HIV-1 protease and P2-ligand interactions through molecular dynamics simulations, binding free energy and principal component analysis.
    Karnati KR; Wang Y
    J Mol Graph Model; 2019 Nov; 92():112-122. PubMed ID: 31351319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple Molecular Dynamics Simulations and Energy Analysis Unravel the Dynamic Properties and Binding Mechanism of Mutants HIV-1 Protease with DRV and CA-p2.
    Wang R; Zheng Q
    Microbiol Spectr; 2022 Apr; 10(2):e0074821. PubMed ID: 35319278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by Amprenavir and Darunavir.
    Yu Y; Wang J; Shao Q; Shi J; Zhu W
    Sci Rep; 2015 May; 5():10517. PubMed ID: 26012849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of single walled carbon nanotube to WT and mutant HIV-1 proteases: analysis of flap dynamics and binding mechanism.
    Meher BR; Wang Y
    J Mol Graph Model; 2012 Sep; 38():430-45. PubMed ID: 23142620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the flap dynamics of the South African HIV subtype C protease in presence of FDA-approved inhibitors: MD study.
    Maphumulo SI; Halder AK; Govender T; Maseko S; Maguire GEM; Honarparvar B; Kruger HG
    Chem Biol Drug Des; 2018 Nov; 92(5):1899-1913. PubMed ID: 30003668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural studies on molecular mechanisms of Nelfinavir resistance caused by non-active site mutation V77I in HIV-1 protease.
    Gupta A; Jamal S; Goyal S; Jain R; Wahi D; Grover A
    BMC Bioinformatics; 2015; 16 Suppl 19(Suppl 19):S10. PubMed ID: 26695135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of I50V mutant and I50L/A71V double mutant HIV-protease with inhibitor TMC114 (darunavir): molecular dynamics simulation and binding free energy studies.
    Meher BR; Wang Y
    J Phys Chem B; 2012 Feb; 116(6):1884-900. PubMed ID: 22239286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the drug resistance of V32I and M46L mutant HIV-1 protease to inhibitor TMC114: flap dynamics and binding mechanism.
    Meher BR; Wang Y
    J Mol Graph Model; 2015 Mar; 56():60-73. PubMed ID: 25562662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring molecular mechanism of allosteric inhibitor to relieve drug resistance of multiple mutations in HIV-1 protease by enhanced conformational sampling.
    Chen J; Peng C; Wang J; Zhu W
    Proteins; 2018 Dec; 86(12):1294-1305. PubMed ID: 30260044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structural, dynamic, and thermodynamic basis of darunavir resistance of a heavily mutated HIV-1 protease using molecular dynamics simulation.
    Shabanpour Y; Sajjadi S; Behmard E; Abdolmaleki P; Keihan AH
    Front Mol Biosci; 2022; 9():927373. PubMed ID: 36046605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study.
    Leonis G; Steinbrecher T; Papadopoulos MG
    J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights.
    Chetty S; Bhakat S; Martin AJ; Soliman ME
    J Biomol Struct Dyn; 2016; 34(1):135-51. PubMed ID: 25671669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple Molecular Dynamics Simulations and Free-Energy Predictions Uncover the Susceptibility of Variants of HIV-1 Protease against Inhibitors Darunavir and KNI-1657.
    Wang R; Zheng Q
    Langmuir; 2021 Dec; 37(49):14407-14418. PubMed ID: 34851643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the drug resistance mechanism of active site, non-active site mutations and their cooperative effects in CRF01_AE HIV-1 protease: molecular dynamics simulations and free energy calculations.
    C S V; Tamizhselvi R; Munusami P
    J Biomol Struct Dyn; 2019 Jul; 37(10):2608-2626. PubMed ID: 30051758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir.
    Liu F; Kovalevsky AY; Tie Y; Ghosh AK; Harrison RW; Weber IT
    J Mol Biol; 2008 Aug; 381(1):102-15. PubMed ID: 18597780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interchain hydrophobic clustering promotes rigidity in HIV-1 protease flap dynamics: new insights from molecular dynamics.
    Meher BR; Kumar MV; Bandyopadhyay P
    J Biomol Struct Dyn; 2014; 32(6):899-915. PubMed ID: 23782135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational studies of darunavir into HIV-1 protease and DMPC bilayer: necessary conditions for effective binding and the role of the flaps.
    Leonis G; Czyżnikowska Ż; Megariotis G; Reis H; Papadopoulos MG
    J Chem Inf Model; 2012 Jun; 52(6):1542-58. PubMed ID: 22587384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced molecular mechanisms of modified DRV compounds in targeting HIV-1 protease mutations and interrupting monomer dimerization.
    Tang B; Luo S; Wang Q; Gao P; Duan L
    Phys Chem Chem Phys; 2024 Feb; 26(6):4989-5001. PubMed ID: 38258432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalized carbon nanotubes as an alternative to traditional anti-HIV-1 protease inhibitors: An understanding towards Nano-medicine development through MD simulations.
    Panda M; Purohit P; Wang Y; Meher BR
    J Mol Graph Model; 2022 Dec; 117():108280. PubMed ID: 35963109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease.
    Kar P; Lipowsky R; Knecht V
    J Phys Chem B; 2013 May; 117(19):5793-805. PubMed ID: 23614718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.