BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31351331)

  • 1. Biotransformation of betulin by Mucor subtilissimus to discover anti-inflammatory derivatives.
    Li J; Jiang B; Chen C; Fan B; Huang H; Chen G
    Phytochemistry; 2019 Oct; 166():112076. PubMed ID: 31351331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotransformation of betulinic acid by Circinella muscae and Cunninghamella echinulata to discover anti-inflammatory derivatives.
    Chen C; Song K; Zhang Y; Chu C; Fan B; Song Y; Huang H; Chen G
    Phytochemistry; 2021 Feb; 182():112608. PubMed ID: 33310627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New derivatives of ursolic acid through the biotransformation by Bacillus megaterium CGMCC 1.1741 as inhibitors on nitric oxide production.
    Zhang C; Xu SH; Ma BL; Wang WW; Yu BY; Zhang J
    Bioorg Med Chem Lett; 2017 Jun; 27(11):2575-2578. PubMed ID: 28427811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural determination of two new triterpenoids biotransformed from glycyrrhetinic acid by Mucor polymorphosporus.
    Xin XL; Yang G; Gou ZP; Yao JH; Lan R; Ma XC
    Magn Reson Chem; 2010 Feb; 48(2):164-7. PubMed ID: 19960494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotransformation of 20(S)-protopanaxatriol by Mucor spinosus and the cytotoxic structure activity relationships of the transformed products.
    Zhang J; Guo H; Tian Y; Liu P; Li N; Zhou J; Guo D
    Phytochemistry; 2007 Oct; 68(20):2523-30. PubMed ID: 17624380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial transformation of hederagenin by Cunninghamella echinulate, Mucor subtilissimus, and Pseudomonas oleovorans.
    Liu Z; Lu YH; Feng X; Zou YX; Diao Z; Chu ZY
    J Asian Nat Prod Res; 2017 Jul; 19(7):712-718. PubMed ID: 27666872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotransformation of Curcumenol by Mucor polymorphosporus.
    Chen LX; Zhao Q; Zhang M; Liang YY; Ma JH; Zhang X; Ding LQ; Zhao F; Qiu F
    J Nat Prod; 2015 Apr; 78(4):674-80. PubMed ID: 25821895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rosanortriterpene C, a 3,24-Dinor-2,4-seco-ursane Triterpene from the Fruits of Rosa laevigata var. leiocapus.
    Tian Y; Feng L; Li B; Hu J; Xie J; Xiao W; Nie L; Wu J
    Chem Pharm Bull (Tokyo); 2019; 67(11):1255-1258. PubMed ID: 31685754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial transformation of glycyrrhetinic acid derivatives by Bacillus subtilis ATCC 6633 and Bacillus megaterium CGMCC 1.1741.
    Shen P; Zhang J; Zhu Y; Wang W; Yu B; Wang W
    Bioorg Med Chem; 2020 Jun; 28(11):115465. PubMed ID: 32299661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactivity-guided isolation of anti-inflammatory triterpenoids from the sclerotia of Poria cocos using LPS-stimulated Raw264.7 cells.
    Lee SR; Lee S; Moon E; Park HJ; Park HB; Kim KH
    Bioorg Chem; 2017 Feb; 70():94-99. PubMed ID: 27912907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial transformation of pentacyclic triterpenes for anti-inflammatory agents on the HMGB1 stimulated RAW 264.7 cells by Streptomyces olivaceus CICC 23628.
    Zhu Y; Shen P; Wang J; Jiang X; Wang W; Raj R; Ge H; Wang W; Yu B; Zhang J
    Bioorg Med Chem; 2021 Dec; 52():116494. PubMed ID: 34800877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triterpenoid saponins from the rhizomes of Anemone flaccida and their inhibitory activities on LPS-induced NO production in macrophage RAW264.7 cells.
    Huang XJ; Tang JQ; Li MM; Liu Q; Li YL; Fan CL; Pei H; Zhao HN; Wang Y; Ye WC
    J Asian Nat Prod Res; 2014; 16(9):910-21. PubMed ID: 25236706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-Inflammatory Triterpenoids from the
    Qin BH; Liu XQ; Yuan QY; Wang J; Han HY
    Molecules; 2018 May; 23(5):. PubMed ID: 29751627
    [No Abstract]   [Full Text] [Related]  

  • 14. Biotransformation of Erythrodiol for New Food Supplements with Anti-Inflammatory Properties.
    Shen P; Wang W; Xu S; Du Z; Wang W; Yu B; Zhang J
    J Agric Food Chem; 2020 May; 68(21):5910-5916. PubMed ID: 32351112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terpenoid constituents of Abies chensiensis with potential anti-inflammatory activity.
    Li YL; Yang XW; Li SM; Shen YH; Zeng HW; Liu XH; Tang J; Zhang WD
    J Nat Prod; 2009 Jun; 72(6):1065-8. PubMed ID: 19435338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial transformation and inhibitory effect assessment of uvaol derivates against LPS and HMGB1 induced NO production in RAW264.7 macrophages.
    Jiang X; Shen P; Zhou J; Ge H; Raj R; Wang W; Yu B; Zhang J
    Bioorg Med Chem Lett; 2022 Feb; 58():128523. PubMed ID: 34973341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotransformation of 11-keto-β-boswellic acid by Cunninghamella blakesleana.
    Wang Y; Sun Y; Wang C; Huo X; Liu P; Wang C; Zhang B; Zhan L; Zhang H; Deng S; Zhao Y; Ma X
    Phytochemistry; 2013 Dec; 96():330-6. PubMed ID: 23962801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-Inflammatory 18β-Glycyrrhetinin Acid Derivatives Produced by Biocatalysis.
    Fan B; Jiang B; Yan S; Xu B; Huang H; Chen G
    Planta Med; 2019 Jan; 85(1):56-61. PubMed ID: 30086557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-aging derivatives of cycloastragenol produced by biotransformation.
    Chen C; Ni Y; Jiang B; Yan S; Xu B; Fan B; Huang H; Chen G
    Nat Prod Res; 2021 Aug; 35(16):2685-2690. PubMed ID: 31496283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 20-Hydroxy-3-Oxolupan-28-Oic Acid Attenuates Inflammatory Responses by Regulating PI3K⁻Akt and MAPKs Signaling Pathways in LPS-Stimulated RAW264.7 Macrophages.
    Cao Y; Li F; Luo Y; Zhang L; Lu S; Xing R; Yan B; Zhang H; Hu W
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30678231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.