These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 31351331)
1. Biotransformation of betulin by Mucor subtilissimus to discover anti-inflammatory derivatives. Li J; Jiang B; Chen C; Fan B; Huang H; Chen G Phytochemistry; 2019 Oct; 166():112076. PubMed ID: 31351331 [TBL] [Abstract][Full Text] [Related]
2. Biotransformation of betulinic acid by Circinella muscae and Cunninghamella echinulata to discover anti-inflammatory derivatives. Chen C; Song K; Zhang Y; Chu C; Fan B; Song Y; Huang H; Chen G Phytochemistry; 2021 Feb; 182():112608. PubMed ID: 33310627 [TBL] [Abstract][Full Text] [Related]
3. New derivatives of ursolic acid through the biotransformation by Bacillus megaterium CGMCC 1.1741 as inhibitors on nitric oxide production. Zhang C; Xu SH; Ma BL; Wang WW; Yu BY; Zhang J Bioorg Med Chem Lett; 2017 Jun; 27(11):2575-2578. PubMed ID: 28427811 [TBL] [Abstract][Full Text] [Related]
4. Structural determination of two new triterpenoids biotransformed from glycyrrhetinic acid by Mucor polymorphosporus. Xin XL; Yang G; Gou ZP; Yao JH; Lan R; Ma XC Magn Reson Chem; 2010 Feb; 48(2):164-7. PubMed ID: 19960494 [TBL] [Abstract][Full Text] [Related]
5. Biotransformation of 20(S)-protopanaxatriol by Mucor spinosus and the cytotoxic structure activity relationships of the transformed products. Zhang J; Guo H; Tian Y; Liu P; Li N; Zhou J; Guo D Phytochemistry; 2007 Oct; 68(20):2523-30. PubMed ID: 17624380 [TBL] [Abstract][Full Text] [Related]
6. Microbial transformation of hederagenin by Cunninghamella echinulate, Mucor subtilissimus, and Pseudomonas oleovorans. Liu Z; Lu YH; Feng X; Zou YX; Diao Z; Chu ZY J Asian Nat Prod Res; 2017 Jul; 19(7):712-718. PubMed ID: 27666872 [TBL] [Abstract][Full Text] [Related]
7. Biotransformation of Curcumenol by Mucor polymorphosporus. Chen LX; Zhao Q; Zhang M; Liang YY; Ma JH; Zhang X; Ding LQ; Zhao F; Qiu F J Nat Prod; 2015 Apr; 78(4):674-80. PubMed ID: 25821895 [TBL] [Abstract][Full Text] [Related]
8. Rosanortriterpene C, a 3,24-Dinor-2,4-seco-ursane Triterpene from the Fruits of Rosa laevigata var. leiocapus. Tian Y; Feng L; Li B; Hu J; Xie J; Xiao W; Nie L; Wu J Chem Pharm Bull (Tokyo); 2019; 67(11):1255-1258. PubMed ID: 31685754 [TBL] [Abstract][Full Text] [Related]
9. Microbial transformation of glycyrrhetinic acid derivatives by Bacillus subtilis ATCC 6633 and Bacillus megaterium CGMCC 1.1741. Shen P; Zhang J; Zhu Y; Wang W; Yu B; Wang W Bioorg Med Chem; 2020 Jun; 28(11):115465. PubMed ID: 32299661 [TBL] [Abstract][Full Text] [Related]
10. Triterpene esters of Xu QJ; Liu JC; Huang CJ; Wang X; Shang XY J Asian Nat Prod Res; 2024 Aug; 26(8):892-899. PubMed ID: 38600044 [TBL] [Abstract][Full Text] [Related]
11. Bioactivity-guided isolation of anti-inflammatory triterpenoids from the sclerotia of Poria cocos using LPS-stimulated Raw264.7 cells. Lee SR; Lee S; Moon E; Park HJ; Park HB; Kim KH Bioorg Chem; 2017 Feb; 70():94-99. PubMed ID: 27912907 [TBL] [Abstract][Full Text] [Related]
12. Microbial transformation of pentacyclic triterpenes for anti-inflammatory agents on the HMGB1 stimulated RAW 264.7 cells by Streptomyces olivaceus CICC 23628. Zhu Y; Shen P; Wang J; Jiang X; Wang W; Raj R; Ge H; Wang W; Yu B; Zhang J Bioorg Med Chem; 2021 Dec; 52():116494. PubMed ID: 34800877 [TBL] [Abstract][Full Text] [Related]
13. Triterpenoid saponins from the rhizomes of Anemone flaccida and their inhibitory activities on LPS-induced NO production in macrophage RAW264.7 cells. Huang XJ; Tang JQ; Li MM; Liu Q; Li YL; Fan CL; Pei H; Zhao HN; Wang Y; Ye WC J Asian Nat Prod Res; 2014; 16(9):910-21. PubMed ID: 25236706 [TBL] [Abstract][Full Text] [Related]
14. Anti-Inflammatory Triterpenoids from the Qin BH; Liu XQ; Yuan QY; Wang J; Han HY Molecules; 2018 May; 23(5):. PubMed ID: 29751627 [No Abstract] [Full Text] [Related]
15. Biotransformation of Erythrodiol for New Food Supplements with Anti-Inflammatory Properties. Shen P; Wang W; Xu S; Du Z; Wang W; Yu B; Zhang J J Agric Food Chem; 2020 May; 68(21):5910-5916. PubMed ID: 32351112 [TBL] [Abstract][Full Text] [Related]
16. Terpenoid constituents of Abies chensiensis with potential anti-inflammatory activity. Li YL; Yang XW; Li SM; Shen YH; Zeng HW; Liu XH; Tang J; Zhang WD J Nat Prod; 2009 Jun; 72(6):1065-8. PubMed ID: 19435338 [TBL] [Abstract][Full Text] [Related]
17. Microbial transformation and inhibitory effect assessment of uvaol derivates against LPS and HMGB1 induced NO production in RAW264.7 macrophages. Jiang X; Shen P; Zhou J; Ge H; Raj R; Wang W; Yu B; Zhang J Bioorg Med Chem Lett; 2022 Feb; 58():128523. PubMed ID: 34973341 [TBL] [Abstract][Full Text] [Related]
18. Biotransformation of 11-keto-β-boswellic acid by Cunninghamella blakesleana. Wang Y; Sun Y; Wang C; Huo X; Liu P; Wang C; Zhang B; Zhan L; Zhang H; Deng S; Zhao Y; Ma X Phytochemistry; 2013 Dec; 96():330-6. PubMed ID: 23962801 [TBL] [Abstract][Full Text] [Related]
19. Anti-Inflammatory 18β-Glycyrrhetinin Acid Derivatives Produced by Biocatalysis. Fan B; Jiang B; Yan S; Xu B; Huang H; Chen G Planta Med; 2019 Jan; 85(1):56-61. PubMed ID: 30086557 [TBL] [Abstract][Full Text] [Related]
20. Anti-aging derivatives of cycloastragenol produced by biotransformation. Chen C; Ni Y; Jiang B; Yan S; Xu B; Fan B; Huang H; Chen G Nat Prod Res; 2021 Aug; 35(16):2685-2690. PubMed ID: 31496283 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]