These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 31351361)
41. Ultrasonic radiation to enable improvement of direct methanol fuel cell. Wu C; Wu J; Luo H; Wang S; Chen T Ultrason Sonochem; 2016 Mar; 29():363-70. PubMed ID: 26585016 [TBL] [Abstract][Full Text] [Related]
42. Investigations of the barbell ultrasonic transducer operated in the full-wave vibrational mode. Fu Z; Xian X; Lin S; Wang C; Hu W; Li G Ultrasonics; 2012 Jul; 52(5):578-86. PubMed ID: 22273150 [TBL] [Abstract][Full Text] [Related]
43. Finite element modelling strategy for determining directivity of thermoelastically generated laser ultrasound. Tu XL; Zhang J; Gambaruto AM; Wilcox PD Ultrasonics; 2024 Mar; 138():107252. PubMed ID: 38277767 [TBL] [Abstract][Full Text] [Related]
44. Acoustic power measurement of high intensity focused ultrasound in medicine based on radiation force. Shou W; Huang X; Duan S; Xia R; Shi Z; Geng X; Li F Ultrasonics; 2006 Dec; 44 Suppl 1():e17-20. PubMed ID: 16860359 [TBL] [Abstract][Full Text] [Related]
45. Vibration amplitude and induced temperature limitation of high power air-borne ultrasonic transducers. Saffar S; Abdullah A Ultrasonics; 2014 Jan; 54(1):168-76. PubMed ID: 23664304 [TBL] [Abstract][Full Text] [Related]
46. FEM calculation of an acoustic field in a sonochemical reactor. Yasui K; Kozuka T; Tuziuti T; Towata A; Iida Y; King J; Macey P Ultrason Sonochem; 2007 Jul; 14(5):605-614. PubMed ID: 17113812 [TBL] [Abstract][Full Text] [Related]
47. Noncontact ultrasonic transportation of small objects in a circular trajectory in air by flexural vibrations of a circular disc. Koyama D; Nakamura K IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1434-42. PubMed ID: 20529718 [TBL] [Abstract][Full Text] [Related]
48. Effects of excitation area of longitudinal transducer on the flexural vibration characteristics of a rectangular plate in stripe mode. He X; Yao J; Zhang H; Liu D; Li J Ultrasonics; 2015 Apr; 58():104-10. PubMed ID: 25616374 [TBL] [Abstract][Full Text] [Related]
49. Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics. Sarvazyan A; Fillinger L Ultrasonics; 2009 Mar; 49(3):301-5. PubMed ID: 19062060 [TBL] [Abstract][Full Text] [Related]
50. Design and characterization of a high-power ultrasound driver with ultralow-output impedance. Lewis GK; Olbricht WL Rev Sci Instrum; 2009 Nov; 80(11):114704. PubMed ID: 19947748 [TBL] [Abstract][Full Text] [Related]
51. Relationship between acoustic power and acoustic radiation force on absorbing and reflecting targets for spherically focusing radiators. Gélat P; Shaw A Ultrasound Med Biol; 2015 Mar; 41(3):832-44. PubMed ID: 25683223 [TBL] [Abstract][Full Text] [Related]
53. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm. Saffar S; Abdullah A Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329 [TBL] [Abstract][Full Text] [Related]
54. Performance Enhancement of an Ultrasonic Power Transfer System Through a Tightly Coupled Solid Media Using a KLM Model. Kar B; Wallrabe U Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32235434 [TBL] [Abstract][Full Text] [Related]
55. Fabrication, Acoustic Characterization and Phase Reference-Based Calibration Method for a Single-Sided Multi-Channel Ultrasonic Actuator. Cao HX; Jung D; Lee HS; Nguyen VD; Choi E; Kim CS; Park JO; Kang B Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557481 [TBL] [Abstract][Full Text] [Related]
56. Evolvable Acoustic Field Generated by a Transducer with 3D-Printed Fresnel Lens. Wang D; Lin P; Chen Z; Fei C; Qiu Z; Chen Q; Sun X; Wu Y; Sun L Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832726 [TBL] [Abstract][Full Text] [Related]
57. Design and experimental characterization of a multifrequency flexural ultrasonic actuator. Iula A IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1725-30. PubMed ID: 19686988 [TBL] [Abstract][Full Text] [Related]
58. Matching a transducer to water at cavitation: acoustic horn design principles. Peshkovsky SL; Peshkovsky AS Ultrason Sonochem; 2007 Mar; 14(3):314-22. PubMed ID: 16905351 [TBL] [Abstract][Full Text] [Related]
59. Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy. Hertzberg Y; Volovick A; Zur Y; Medan Y; Vitek S; Navon G Med Phys; 2010 Jun; 37(6):2934-42. PubMed ID: 20632605 [TBL] [Abstract][Full Text] [Related]
60. Probing acoustic fields of clinically relevant transducers: the effect of hydrophone probes' finite apertures and bandwidths. Radulescu EG; Lewin PA; Wójcik J; Nowicki A IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Oct; 51(10):1262-70. PubMed ID: 15553510 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]