These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31351382)

  • 1. The importance of cyanobacteria and microalgae present in aerosols to human health and the environment - Review study.
    Wiśniewska K; Lewandowska AU; Śliwińska-Wilczewska S
    Environ Int; 2019 Oct; 131():104964. PubMed ID: 31351382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of cyanobacteria and microalgae in aerosols of various sizes in the air over the Southern Baltic Sea.
    Lewandowska AU; Śliwińska-Wilczewska S; Woźniczka D
    Mar Pollut Bull; 2017 Dec; 125(1-2):30-38. PubMed ID: 28823424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative and qualitative variability of airborne cyanobacteria and microalgae and their toxins in the coastal zone of the Baltic Sea.
    Wiśniewska K; Śliwińska-Wilczewska S; Savoie M; Lewandowska AU
    Sci Total Environ; 2022 Jun; 826():154152. PubMed ID: 35227725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Ability of Airborne Microalgae and Cyanobacteria to Survive and Transfer the Carcinogenic Benzo(a)pyrene in Coastal Regions.
    Wiśniewska KA; Lewandowska AU; Śliwińska-Wilczewska S; Staniszewska M; Budzałek G
    Cells; 2023 Apr; 12(7):. PubMed ID: 37048146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The first characterization of airborne cyanobacteria and microalgae in the Adriatic Sea region.
    Wiśniewska KA; Śliwińska-Wilczewska S; Lewandowska AU
    PLoS One; 2020; 15(9):e0238808. PubMed ID: 32913356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Abiotic Factors on Abundance and Photosynthetic Performance of Airborne Cyanobacteria and Microalgae Isolated from the Southern Baltic Sea Region.
    Wiśniewska K; Śliwińska-Wilczewska S; Lewandowska A; Konik M
    Cells; 2021 Jan; 10(1):. PubMed ID: 33429949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation.
    Subashchandrabose SR; Ramakrishnan B; Megharaj M; Venkateswarlu K; Naidu R
    Environ Int; 2013 Jan; 51():59-72. PubMed ID: 23201778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Airborne microalgal and cyanobacterial diversity and composition during rain events in the southern Baltic Sea region.
    Wiśniewska KA; Śliwińska-Wilczewska S; Lewandowska AU
    Sci Rep; 2022 Feb; 12(1):2029. PubMed ID: 35132131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potentially harmful microalgae and algal blooms in the Red Sea: Current knowledge and research needs.
    Mohamed ZA
    Mar Environ Res; 2018 Sep; 140():234-242. PubMed ID: 29970250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pollutant toxicology with respect to microalgae and cyanobacteria.
    Lu T; Zhang Q; Zhang Z; Hu B; Chen J; Chen J; Qian H
    J Environ Sci (China); 2021 Jan; 99():175-186. PubMed ID: 33183695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A scientometric analysis of ecotoxicological studies with the herbicide atrazine and microalgae and cyanobacteria as test organisms.
    Castro MS; Barbosa FG; Guimarães PS; Martins CMG; Zanette J
    Environ Sci Pollut Res Int; 2021 May; 28(20):25196-25206. PubMed ID: 33453026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges.
    Renuka N; Guldhe A; Prasanna R; Singh P; Bux F
    Biotechnol Adv; 2018; 36(4):1255-1273. PubMed ID: 29673972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyanobacteria and Algae in Clouds and Rain in the Area of puy de Dôme, Central France.
    Dillon KP; Correa F; Judon C; Sancelme M; Fennell DE; Delort AM; Amato P
    Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33097513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactive compounds from cyanobacteria and microalgae: an overview.
    Singh S; Kate BN; Banerjee UC
    Crit Rev Biotechnol; 2005; 25(3):73-95. PubMed ID: 16294828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal variation in the spectrum and concentration of airborne microalgae and cyanobacteria in the urban environments of inland temperate climate.
    Žilka M; Tropeková M; Zahradníková E; Kováčik Ľ; Ščevková J
    Environ Sci Pollut Res Int; 2023 Sep; 30(43):97616-97628. PubMed ID: 37594706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exopolysaccharides from Microalgae and Cyanobacteria: Diversity of Strains, Production Strategies, and Applications.
    Laroche C
    Mar Drugs; 2022 May; 20(5):. PubMed ID: 35621987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health.
    Abinandan S; Subashchandrabose SR; Venkateswarlu K; Megharaj M
    Crit Rev Biotechnol; 2019 Dec; 39(8):981-998. PubMed ID: 31455102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric aerosols: composition, transformation, climate and health effects.
    Pöschl U
    Angew Chem Int Ed Engl; 2005 Nov; 44(46):7520-40. PubMed ID: 16302183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioelectrochemical systems using microalgae - A concise research update.
    Saratale RG; Kuppam C; Mudhoo A; Saratale GD; Periyasamy S; Zhen G; Koók L; Bakonyi P; Nemestóthy N; Kumar G
    Chemosphere; 2017 Jun; 177():35-43. PubMed ID: 28284115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria.
    Patel A; Matsakas L; Rova U; Christakopoulos P
    Bioresour Technol; 2019 Apr; 278():424-434. PubMed ID: 30685131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.