These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31351515)

  • 1. Inertial wearables as pragmatic tools in dementia.
    Godfrey A; Brodie M; van Schooten KS; Nouredanesh M; Stuart S; Robinson L
    Maturitas; 2019 Sep; 127():12-17. PubMed ID: 31351515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearables for independent living in older adults: Gait and falls.
    Godfrey A
    Maturitas; 2017 Jun; 100():16-26. PubMed ID: 28539173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wearables for gait and balance assessment in the neurological ward - study design and first results of a prospective cross-sectional feasibility study with 384 inpatients.
    Bernhard FP; Sartor J; Bettecken K; Hobert MA; Arnold C; Weber YG; Poli S; Margraf NG; Schlenstedt C; Hansen C; Maetzler W
    BMC Neurol; 2018 Aug; 18(1):114. PubMed ID: 30115021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wearables beyond borders: A case study of barriers to gait assessment in low-resource settings.
    Godfrey A; Aranda C; Hussain A; Barreto M; Rocha T; Vitório R
    Maturitas; 2020 Jul; 137():7-10. PubMed ID: 32498939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IoT-Enabled Gait Assessment: The Next Step for Habitual Monitoring.
    Young F; Mason R; Morris RE; Stuart S; Godfrey A
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of wearables in spinal posture analysis: a systematic review.
    Simpson L; Maharaj MM; Mobbs RJ
    BMC Musculoskelet Disord; 2019 Feb; 20(1):55. PubMed ID: 30736775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait Assessment Using Wearable Sensor-Based Devices in People Living with Dementia: A Systematic Review.
    Weizman Y; Tirosh O; Beh J; Fuss FK; Pedell S
    Int J Environ Res Public Health; 2021 Dec; 18(23):. PubMed ID: 34886459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait analysis in neurological populations: Progression in the use of wearables.
    Celik Y; Stuart S; Woo WL; Godfrey A
    Med Eng Phys; 2021 Jan; 87():9-29. PubMed ID: 33461679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review on Wearable Technology Sensors Used in Consumer Sport Applications.
    Aroganam G; Manivannan N; Harrison D
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31035333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive Continuous Monitoring of Vital Signs With Wearables: Fit for Medical Use?
    Jacobsen M; Dembek TA; Kobbe G; Gaidzik PW; Heinemann L
    J Diabetes Sci Technol; 2021 Jan; 15(1):34-43. PubMed ID: 32063034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting free-living steps and walking bouts: validating an algorithm for macro gait analysis.
    Hickey A; Del Din S; Rochester L; Godfrey A
    Physiol Meas; 2017 Jan; 38(1):N1-N15. PubMed ID: 27941238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection of and Evidentiary Considerations for Wearable Devices and Their Measurements for Use in Regulatory Decision Making: Recommendations from the ePRO Consortium.
    Byrom B; Watson C; Doll H; Coons SJ; Eremenco S; Ballinger R; Mc Carthy M; Crescioni M; O'Donohoe P; Howry C;
    Value Health; 2018 Jun; 21(6):631-639. PubMed ID: 29909867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SciKit Digital Health: Python Package for Streamlined Wearable Inertial Sensor Data Processing.
    Adamowicz L; Christakis Y; Czech MD; Adamusiak T
    JMIR Mhealth Uhealth; 2022 Apr; 10(4):e36762. PubMed ID: 35353039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. It's not about the capture, it's about what we can learn": a qualitative study of experts' opinions and experiences regarding the use of wearable sensors to measure gait and physical activity.
    Keogh A; Taraldsen K; Caulfield B; Vereijken B
    J Neuroeng Rehabil; 2021 May; 18(1):78. PubMed ID: 33975600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait evaluation using inertial measurement units in subjects with Parkinson's disease.
    Zago M; Sforza C; Pacifici I; Cimolin V; Camerota F; Celletti C; Condoluci C; De Pandis MF; Galli M
    J Electromyogr Kinesiol; 2018 Oct; 42():44-48. PubMed ID: 29940494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable Sensors to Monitor, Enable Feedback, and Measure Outcomes of Activity and Practice.
    Dobkin BH; Martinez C
    Curr Neurol Neurosci Rep; 2018 Oct; 18(12):87. PubMed ID: 30293160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Commercial Postural Devices: A Review.
    Yoong NKM; Perring J; Mobbs RJ
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Big data collision: the internet of things, wearable devices and genomics in the study of neurological traits and disease.
    Talboom JS; Huentelman MJ
    Hum Mol Genet; 2018 May; 27(R1):R35-R39. PubMed ID: 29562250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocol of a systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments.
    Rast FM; Labruyère R
    Syst Rev; 2018 Oct; 7(1):174. PubMed ID: 30355320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Wearables in the treatment of neurological diseases-where do we stand today?].
    Klucken J; Gladow T; Hilgert JG; Stamminger M; Weigand C; Eskofier B
    Nervenarzt; 2019 Aug; 90(8):787-795. PubMed ID: 31309270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.