These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 31351646)
1. Chemical composition and leachability of differently sized material fractions of municipal solid waste incineration bottom ash. Huber F; Blasenbauer D; Aschenbrenner P; Fellner J Waste Manag; 2019 Jul; 95():593-603. PubMed ID: 31351646 [TBL] [Abstract][Full Text] [Related]
2. Complete determination of the material composition of municipal solid waste incineration bottom ash. Huber F; Blasenbauer D; Aschenbrenner P; Fellner J Waste Manag; 2020 Feb; 102():677-685. PubMed ID: 31790926 [TBL] [Abstract][Full Text] [Related]
3. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays. Ribé V; Nehrenheim E; Odlare M Waste Manag; 2014 Oct; 34(10):1871-6. PubMed ID: 24502934 [TBL] [Abstract][Full Text] [Related]
4. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials. Funari V; Braga R; Bokhari SN; Dinelli E; Meisel T Waste Manag; 2015 Nov; 45():206-16. PubMed ID: 25512234 [TBL] [Abstract][Full Text] [Related]
5. To fractionate municipal solid waste incineration bottom ash: Key for utilisation? Sormunen LA; Rantsi R Waste Manag Res; 2015 Nov; 33(11):995-1004. PubMed ID: 26330401 [TBL] [Abstract][Full Text] [Related]
6. Distribution of recoverable metal resources and harmful elements depending on particle size and density in municipal solid waste incineration bottom ash from dry discharge system. Back S; Sakanakura H Waste Manag; 2021 May; 126():652-663. PubMed ID: 33872974 [TBL] [Abstract][Full Text] [Related]
7. Comparing the quantity and quality of glass, metals, and minerals present in waste incineration bottom ashes from a fluidized bed and a grate incinerator. Blasenbauer D; Huber F; Mühl J; Fellner J; Lederer J Waste Manag; 2023 Apr; 161():142-155. PubMed ID: 36878041 [TBL] [Abstract][Full Text] [Related]
8. Content and fractionation of Cu, Zn and Cd in size fractionated municipal solid waste incineration bottom ash. Yao J; Kong Q; Zhu H; Long Y; Shen D Ecotoxicol Environ Saf; 2013 Aug; 94():131-7. PubMed ID: 23731863 [TBL] [Abstract][Full Text] [Related]
9. Modelling of material recovery from waste incineration bottom ash. Huber F Waste Manag; 2020 Mar; 105():61-72. PubMed ID: 32028102 [TBL] [Abstract][Full Text] [Related]
10. The relationship between mineral contents, particle matter and bottom ash distribution during pellet combustion: molar balance and chemometric analysis. Jeguirim M; Kraiem N; Lajili M; Guizani C; Zorpas A; Leva Y; Michelin L; Josien L; Limousy L Environ Sci Pollut Res Int; 2017 Apr; 24(11):9927-9939. PubMed ID: 28324253 [TBL] [Abstract][Full Text] [Related]
11. The fate of heavy metals and salts during the wet treatment of municipal solid waste incineration bottom ash. Hu Y; Zhao L; Zhu Y; Zhang B; Hu G; Xu B; He C; Di Maio F Waste Manag; 2021 Feb; 121():33-41. PubMed ID: 33341692 [TBL] [Abstract][Full Text] [Related]
12. Bottom ash derived from municipal solid waste and sewage sludge co-incineration: First results about characterization and reuse. Assi A; Bilo F; Federici S; Zacco A; Depero LE; Bontempi E Waste Manag; 2020 Oct; 116():147-156. PubMed ID: 32799096 [TBL] [Abstract][Full Text] [Related]
13. Analysis of heavy metal, rare, precious, and metallic element content in bottom ash from municipal solid waste incineration in Tehran based on particle size. Beikmohammadi M; Yaghmaeian K; Nabizadeh R; Mahvi AH Sci Rep; 2023 Sep; 13(1):16044. PubMed ID: 37749159 [TBL] [Abstract][Full Text] [Related]
14. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios. Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920 [TBL] [Abstract][Full Text] [Related]
15. X-ray fluorescence sorting of non-ferrous metal fractions from municipal solid waste incineration bottom ash processing depending on particle surface properties. Pfandl K; Küppers B; Scheiber S; Stockinger G; Holzer J; Pomberger R; Antrekowitsch H; Vollprecht D Waste Manag Res; 2020 Feb; 38(2):111-121. PubMed ID: 31621535 [TBL] [Abstract][Full Text] [Related]
16. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching. Santos RM; Mertens G; Salman M; Cizer Ö; Van Gerven T J Environ Manage; 2013 Oct; 128():807-21. PubMed ID: 23867838 [TBL] [Abstract][Full Text] [Related]
17. Effect of ferrous metal presence on lead leaching in municipal waste incineration bottom ashes. Oehmig WN; Roessler JG; Zhang J; Townsend TG J Hazard Mater; 2015; 283():500-6. PubMed ID: 25464288 [TBL] [Abstract][Full Text] [Related]
18. A two-stage treatment for Municipal Solid Waste Incineration (MSWI) bottom ash to remove agglomerated fine particles and leachable contaminants. Alam Q; Florea MVA; Schollbach K; Brouwers HJH Waste Manag; 2017 Sep; 67():181-192. PubMed ID: 28578859 [TBL] [Abstract][Full Text] [Related]
19. Evaluating the mutagenicity of leachates obtained from the bottom ash of a municipal solid waste incinerator by using a Salmonella reverse mutation assay. Chen PW; Liu ZS; Wun MJ; Ran CL Chemosphere; 2015 Apr; 124():70-6. PubMed ID: 25434273 [TBL] [Abstract][Full Text] [Related]