These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 31351992)
41. Cloning and expression of a family 10 xylanase gene (Aoxyn10) from Aspergillus oryzae in Pichia pastoris. Yin X; Gong YY; Wang JQ; Tang CD; Wu MC J Gen Appl Microbiol; 2013; 59(6):405-15. PubMed ID: 24492599 [TBL] [Abstract][Full Text] [Related]
42. Cloning of a gene encoding β-glucosidase from Chaetomium thermophilum CT2 and its expression in Pichia pastoris. Xu R; Teng F; Zhang C; Li D J Mol Microbiol Biotechnol; 2011; 20(1):16-23. PubMed ID: 21273791 [TBL] [Abstract][Full Text] [Related]
43. Starch-binding domain shuffling in Aspergillus niger glucoamylase. Cornett CA; Fang TY; Reilly PJ; Ford C Protein Eng; 2003 Jul; 16(7):521-9. PubMed ID: 12915730 [TBL] [Abstract][Full Text] [Related]
44. Thermostability improvement of Aspergillus awamori glucoamylase via directed evolution of its gene located on episomal expression vector in Pichia pastoris cells. Schmidt A; Shvetsov A; Soboleva E; Kil Y; Sergeev V; Surzhik M Protein Eng Des Sel; 2019 Dec; 32(6):251-259. PubMed ID: 31891399 [TBL] [Abstract][Full Text] [Related]
45. Starch-degrading enzymes from the brown-rot fungus Fomitopsis palustris. Tanaka Y; Konno N; Suzuki T; Habu N Protein Expr Purif; 2020 Jun; 170():105609. PubMed ID: 32070765 [TBL] [Abstract][Full Text] [Related]
46. Cloning, expression, and characterization of a thermostable glucoamylase from Thermoanaerobacter tengcongensis MB4. Zheng Y; Xue Y; Zhang Y; Zhou C; Schwaneberg U; Ma Y Appl Microbiol Biotechnol; 2010 Jun; 87(1):225-33. PubMed ID: 20155355 [TBL] [Abstract][Full Text] [Related]
47. Characterization of a novel Aspergillus oryzae tannase expressed in Pichia pastoris. Koseki T; Ichikawa K; Sasaki K; Shiono Y J Biosci Bioeng; 2018 Nov; 126(5):553-558. PubMed ID: 29859669 [TBL] [Abstract][Full Text] [Related]
48. Expression and comparison of codon optimised Aspergillus tubingensis amylase variants in Saccharomyces cerevisiae. Cripwell RA; Rose SH; van Zyl WH FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28637248 [TBL] [Abstract][Full Text] [Related]
49. Aspergillus clavatus UEM 04: An efficient producer of glucoamylase and α-amylase able to hydrolyze gelatinized and raw starch. Mendonça APS; Dos Reis KL; Barbosa-Tessmann IP Int J Biol Macromol; 2023 Sep; 249():125890. PubMed ID: 37479205 [TBL] [Abstract][Full Text] [Related]
50. Purification and characterization of a novel cold adapted fungal glucoamylase. Carrasco M; Alcaíno J; Cifuentes V; Baeza M Microb Cell Fact; 2017 May; 16(1):75. PubMed ID: 28464820 [TBL] [Abstract][Full Text] [Related]
51. Properties of a purified thermostable glucoamylase from Aspergillus niveus. da Silva TM; Maller A; Damásio AR; Michelin M; Ward RJ; Hirata IY; Jorge JA; Terenzi HF; de Polizeli ML J Ind Microbiol Biotechnol; 2009 Dec; 36(12):1439-46. PubMed ID: 19697071 [TBL] [Abstract][Full Text] [Related]
52. Isolation and characterization of two genes that encode active glucoamylase without a starch binding domain from Rhizopus oryzae. Mertens JA; Skory CD Curr Microbiol; 2007 Jun; 54(6):462-6. PubMed ID: 17503147 [TBL] [Abstract][Full Text] [Related]
53. Identification and characterization of glucoamylase from the fungus Thermomyces lanuginosus. Thorsen TS; Johnsen AH; Josefsen K; Jensen B Biochim Biophys Acta; 2006 Apr; 1764(4):671-6. PubMed ID: 16488199 [TBL] [Abstract][Full Text] [Related]
54. Synergistic action of recombinant alpha-amylase and glucoamylase on the hydrolysis of starch granules. Wong DW; Robertson GH; Lee CC; Wagschal K Protein J; 2007 Apr; 26(3):159-64. PubMed ID: 17203391 [TBL] [Abstract][Full Text] [Related]
55. Cloning, heterologous expression, and enzymatic characterization of a thermostable glucoamylase from Talaromyces emersonii. Nielsen BR; Lehmbeck J; Frandsen TP Protein Expr Purif; 2002 Oct; 26(1):1-8. PubMed ID: 12356463 [TBL] [Abstract][Full Text] [Related]
56. [Cloning and expression of a new glucoamylase gene]. Yang LQ; Dai XJ; Luo YM; Ma CX; Hou JH; Wu ZQ; Wang CY; Li MG Sheng Wu Gong Cheng Xue Bao; 2007 May; 23(3):477-82, 524. PubMed ID: 17577997 [TBL] [Abstract][Full Text] [Related]
57. Molecular cloning of the glucoamylase gene of Aspergillus shirousami and its expression in Aspergillus oryzae. Shibuya I; Gomi K; Iimura Y; Takahashi K; Tamura G; Hara S Agric Biol Chem; 1990 Aug; 54(8):1905-14. PubMed ID: 1368603 [TBL] [Abstract][Full Text] [Related]
58. Evidence for a polysaccharide-binding domain in Hormoconis resinae glucoamylase P: effects of its proteolytic removal on substrate specificity and inhibition by beta-cyclodextrin. Fagerström R Microbiology (Reading); 1994 Sep; 140 ( Pt 9)():2399-407. PubMed ID: 7952191 [TBL] [Abstract][Full Text] [Related]
59. Consolidated bioprocessing of raw starch with Saccharomyces cerevisiae strains expressing fungal alpha-amylase and glucoamylase combinations. Sakwa L; Cripwell RA; Rose SH; Viljoen-Bloom M FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 30085077 [TBL] [Abstract][Full Text] [Related]
60. Characterization of an organic solvent-tolerant thermostable glucoamylase from a halophilic isolate, Halolactibacillus sp. SK71 and its application in raw starch hydrolysis for bioethanol production. Yu HY; Li X Biotechnol Prog; 2014; 30(6):1262-8. PubMed ID: 25138675 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]