These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31352047)

  • 1. Injectable PLCL/gelatin core-shell nanofibers support noninvasive 3D delivery of stem cells.
    Amagat Molas J; Chen M
    Int J Pharm; 2019 Sep; 568():118566. PubMed ID: 31352047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BSA loaded bead-on-string nanofiber scaffold with core-shell structure applied in tissue engineering.
    Li T; Wang L; Huang Y; Xin B; Liu S
    J Biomater Sci Polym Ed; 2020 Jun; 31(9):1223-1236. PubMed ID: 32268835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coaxial electrospinning of PEEU/gelatin to fiber meshes with enhanced mesenchymal stem cell attachment and proliferation.
    Tung WT; Zou J; Sun X; Wang W; Gould OEC; Kratz K; Ma N; Lendlein A
    Clin Hemorheol Microcirc; 2020; 74(1):53-66. PubMed ID: 31743992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of osteogenic differentiation of human mesenchymal stem cells by poly[(L-lactide)-co-(epsilon-caprolactone)]/gelatin nanofibers.
    Rim NG; Lee JH; Jeong SI; Lee BK; Kim CH; Shin H
    Macromol Biosci; 2009 Aug; 9(8):795-804. PubMed ID: 19434677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Core-shell poly(lactide-co-ε-caprolactone)-gelatin fiber scaffolds as pH-sensitive drug delivery systems.
    Sang Q; Li H; Williams G; Wu H; Zhu LM
    J Biomater Appl; 2018 Mar; 32(8):1105-1118. PubMed ID: 29295656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emulsion electrospun nanofibers as substrates for cardiomyogenic differentiation of mesenchymal stem cells.
    Tian L; Prabhakaran MP; Ding X; Kai D; Ramakrishna S
    J Mater Sci Mater Med; 2013 Nov; 24(11):2577-87. PubMed ID: 23851928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the potential of kartogenin encapsulated poly(L-lactic acid-co-caprolactone)/collagen nanofibers for tracheal cartilage regeneration.
    Yin H; Wang J; Gu Z; Feng W; Gao M; Wu Y; Zheng H; He X; Mo X
    J Biomater Appl; 2017 Sep; 32(3):331-341. PubMed ID: 28658997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly porous core-shell polymeric fiber network.
    Gulfam M; Lee JM; Kim JE; Lim DW; Lee EK; Chung BG
    Langmuir; 2011 Sep; 27(17):10993-9. PubMed ID: 21732692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of spreading, proliferation, and differentiation of human mesenchymal stem cells on gelatin-immobilized poly(L-lactide-co--caprolactone) substrates.
    Shin YM; Kim KS; Lim YM; Nho YC; Shin H
    Biomacromolecules; 2008 Jul; 9(7):1772-81. PubMed ID: 18558737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled release of PDGF-bb by coaxial electrospun dextran/poly(L-lactide-co-epsilon-caprolactone) fibers with an ultrafine core/shell structure.
    Li H; Zhao C; Wang Z; Zhang H; Yuan X; Kong D
    J Biomater Sci Polym Ed; 2010; 21(6-7):803-19. PubMed ID: 20482986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled release of multiple epidermal induction factors through core-shell nanofibers for skin regeneration.
    Jin G; Prabhakaran MP; Kai D; Ramakrishna S
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):689-98. PubMed ID: 23791682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun gelatin/poly(L-lactide-co-epsilon-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds.
    Jeong SI; Lee AY; Lee YM; Shin H
    J Biomater Sci Polym Ed; 2008; 19(3):339-57. PubMed ID: 18325235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalized core/shell nanofibers for the differentiation of mesenchymal stem cells for vascular tissue engineering.
    Ezhilarasu H; Sadiq A; Ratheesh G; Sridhar S; Ramakrishna S; Ab Rahim MH; Yusoff MM; Jose R; Reddy VJ
    Nanomedicine (Lond); 2019 Jan; 14(2):201-214. PubMed ID: 30526272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and Characterization of Core-Shell Nanofibers Using a Next-Generation Airbrush for Biomedical Applications.
    Singh R; Ahmed F; Polley P; Giri J
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):41924-41934. PubMed ID: 30433758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient co-cultivation of human fibroblast cells (HFCs) and adipose-derived stem cells (ADSs) on gelatin/PLCL nanofiber.
    Ranjbar-Mohammadi M; Mousavi E; Mostakhdem Hashemi M; Abbasian M; Asadi J; Esmaili E; Fesharaki M; Asadi P; Arab-Bafrani Z
    IET Nanobiotechnol; 2020 Feb; 14(1):73-77. PubMed ID: 31935681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration.
    Alamein MA; Stephens S; Liu Q; Skabo S; Warnke PH
    Tissue Eng Part C Methods; 2013 Jun; 19(6):458-72. PubMed ID: 23102268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simvastatin-loaded 3D aerogel scaffolds promote bone regeneration.
    Linfeng L; Xiaowei Z; Xueqin C; Xianfeng Z
    Biomed Mater Eng; 2024; 35(2):153-163. PubMed ID: 38363602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coaxial electrospun PCL/Gelatin-MA fibers as scaffolds for vascular tissue engineering.
    Coimbra P; Santos P; Alves P; Miguel SP; Carvalho MP; de Sá KD; Correia IJ; Ferreira P
    Colloids Surf B Biointerfaces; 2017 Nov; 159():7-15. PubMed ID: 28778063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and Stability of Core-Shell Nanofibers by Electrospinning of Gel-Like Corn Oil-in-Water Emulsions Stabilized by Gelatin.
    Zhang C; Zhang H
    J Agric Food Chem; 2018 Nov; 66(44):11681-11690. PubMed ID: 30296080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.