These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
694 related articles for article (PubMed ID: 31352108)
1. Micropatterned conductive hydrogels as multifunctional muscle-mimicking biomaterials: Graphene-incorporated hydrogels directly patterned with femtosecond laser ablation. Park J; Choi JH; Kim S; Jang I; Jeong S; Lee JY Acta Biomater; 2019 Oct; 97():141-153. PubMed ID: 31352108 [TBL] [Abstract][Full Text] [Related]
2. Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation. Jo H; Sim M; Kim S; Yang S; Yoo Y; Park JH; Yoon TH; Kim MG; Lee JY Acta Biomater; 2017 Jan; 48():100-109. PubMed ID: 27989919 [TBL] [Abstract][Full Text] [Related]
3. A Novel Conductive and Micropatterned PEG-Based Hydrogel Enabling the Topographical and Electrical Stimulation of Myoblasts. Gong HY; Park J; Kim W; Kim J; Lee JY; Koh WG ACS Appl Mater Interfaces; 2019 Dec; 11(51):47695-47706. PubMed ID: 31794187 [TBL] [Abstract][Full Text] [Related]
4. Hierarchically aligned fibrous hydrogel films through microfluidic self-assembly of graphene and polysaccharides. Patel A; Xue Y; Hartley R; Sant V; Eles JR; Cui XT; Stolz DB; Sant S Biotechnol Bioeng; 2018 Oct; 115(10):2654-2667. PubMed ID: 30011077 [TBL] [Abstract][Full Text] [Related]
5. Polypyrrole/Alginate Hybrid Hydrogels: Electrically Conductive and Soft Biomaterials for Human Mesenchymal Stem Cell Culture and Potential Neural Tissue Engineering Applications. Yang S; Jang L; Kim S; Yang J; Yang K; Cho SW; Lee JY Macromol Biosci; 2016 Nov; 16(11):1653-1661. PubMed ID: 27455895 [TBL] [Abstract][Full Text] [Related]
7. Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices. Shin YC; Lee JH; Jin L; Kim MJ; Kim YJ; Hyun JK; Jung TG; Hong SW; Han DW J Nanobiotechnology; 2015 Mar; 13():21. PubMed ID: 25886153 [TBL] [Abstract][Full Text] [Related]
8. Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration. Guo B; Qu J; Zhao X; Zhang M Acta Biomater; 2019 Jan; 84():180-193. PubMed ID: 30528606 [TBL] [Abstract][Full Text] [Related]
9. Effects of graphene on the structure, properties, electro-response behaviors of GO/PAA composite hydrogels and influence of electro-mechanical coupling on BMSC differentiation. Qiao K; Guo S; Zheng Y; Xu X; Meng H; Peng J; Fang Z; Xie Y Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():853-863. PubMed ID: 30274121 [TBL] [Abstract][Full Text] [Related]
10. Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gelatin substrate. Hosseini V; Ahadian S; Ostrovidov S; Camci-Unal G; Chen S; Kaji H; Ramalingam M; Khademhosseini A Tissue Eng Part A; 2012 Dec; 18(23-24):2453-65. PubMed ID: 22963391 [TBL] [Abstract][Full Text] [Related]
11. Versatile biomimetic conductive polypyrrole films doped with hyaluronic acid of different molecular weights. Kim S; Jang Y; Jang M; Lim A; Hardy JG; Park HS; Lee JY Acta Biomater; 2018 Oct; 80():258-268. PubMed ID: 30266636 [TBL] [Abstract][Full Text] [Related]
12. Injectable laminin-biofunctionalized gellan gum hydrogels loaded with myoblasts for skeletal muscle regeneration. Alheib O; da Silva LP; da Silva Morais A; Mesquita KA; Pirraco RP; Reis RL; Correlo VM Acta Biomater; 2022 Apr; 143():282-294. PubMed ID: 35278687 [TBL] [Abstract][Full Text] [Related]
13. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering. Chen MC; Sun YC; Chen YH Acta Biomater; 2013 Mar; 9(3):5562-72. PubMed ID: 23099301 [TBL] [Abstract][Full Text] [Related]
14. Injectable OPF/graphene oxide hydrogels provide mechanical support and enhance cell electrical signaling after implantation into myocardial infarct. Zhou J; Yang X; Liu W; Wang C; Shen Y; Zhang F; Zhu H; Sun H; Chen J; Lam J; Mikos AG; Wang C Theranostics; 2018; 8(12):3317-3330. PubMed ID: 29930732 [TBL] [Abstract][Full Text] [Related]
15. Electrical stimulation of neonatal rat cardiomyocytes using conductive polydopamine-reduced graphene oxide-hybrid hydrogels for constructing cardiac microtissues. Li XP; Qu KY; Zhou B; Zhang F; Wang YY; Abodunrin OD; Zhu Z; Huang NP Colloids Surf B Biointerfaces; 2021 Sep; 205():111844. PubMed ID: 34015732 [TBL] [Abstract][Full Text] [Related]
17. Nanomaterial-Based Electrically Conductive Hydrogels for Cardiac Tissue Repair. Lee M; Kim MC; Lee JY Int J Nanomedicine; 2022; 17():6181-6200. PubMed ID: 36531116 [TBL] [Abstract][Full Text] [Related]
18. Photopatterning of conductive hydrogels which exhibit tissue-like properties. Sifringer L; De Windt L; Bernhard S; Amos G; Clément B; Duru J; Tibbitt MW; Tringides CM J Mater Chem B; 2024 Oct; 12(40):10272-10284. PubMed ID: 39298131 [TBL] [Abstract][Full Text] [Related]
19. Enhanced Electroactivity, Mechanical Properties, and Printability through the Addition of Graphene Oxide to Photo-Cross-linkable Gelatin Methacryloyl Hydrogel. Xavier Mendes A; Moraes Silva S; O'Connell CD; Duchi S; Quigley AF; Kapsa RMI; Moulton SE ACS Biomater Sci Eng; 2021 Jun; 7(6):2279-2295. PubMed ID: 33956434 [TBL] [Abstract][Full Text] [Related]
20. In Situ Formation of 3D Conductive and Cell-Laden Graphene Hydrogel for Electrically Regulating Cellular Behavior. Chen X; Ranjan VD; Liu S; Liang YN; Lim JSK; Chen H; Hu X; Zhang Y Macromol Biosci; 2021 Apr; 21(4):e2000374. PubMed ID: 33620138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]