These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
674 related articles for article (PubMed ID: 31352126)
1. Semi-supervised adversarial model for benign-malignant lung nodule classification on chest CT. Xie Y; Zhang J; Xia Y Med Image Anal; 2019 Oct; 57():237-248. PubMed ID: 31352126 [TBL] [Abstract][Full Text] [Related]
2. Knowledge-based Collaborative Deep Learning for Benign-Malignant Lung Nodule Classification on Chest CT. Xie Y; Xia Y; Zhang J; Song Y; Feng D; Fulham M; Cai W IEEE Trans Med Imaging; 2019 Apr; 38(4):991-1004. PubMed ID: 30334786 [TBL] [Abstract][Full Text] [Related]
3. Improved lung nodule diagnosis accuracy using lung CT images with uncertain class. Wang Z; Xin J; Sun P; Lin Z; Yao Y; Gao X Comput Methods Programs Biomed; 2018 Aug; 162():197-209. PubMed ID: 29903487 [TBL] [Abstract][Full Text] [Related]
4. Semi-Supervised Adversarial Learning for Improving the Diagnosis of Pulmonary Nodules. Fu Y; Xue P; Xiao T; Zhang Z; Zhang Y; Dong E IEEE J Biomed Health Inform; 2023 Jan; 27(1):109-120. PubMed ID: 36269913 [TBL] [Abstract][Full Text] [Related]
5. Automated Pulmonary Nodule Classification in Computed Tomography Images Using a Deep Convolutional Neural Network Trained by Generative Adversarial Networks. Onishi Y; Teramoto A; Tsujimoto M; Tsukamoto T; Saito K; Toyama H; Imaizumi K; Fujita H Biomed Res Int; 2019; 2019():6051939. PubMed ID: 30719445 [TBL] [Abstract][Full Text] [Related]
6. Semi-Supervised Deep Transfer Learning for Benign-Malignant Diagnosis of Pulmonary Nodules in Chest CT Images. Shi F; Chen B; Cao Q; Wei Y; Zhou Q; Zhang R; Zhou Y; Yang W; Wang X; Fan R; Yang F; Chen Y; Li W; Gao Y; Shen D IEEE Trans Med Imaging; 2022 Apr; 41(4):771-781. PubMed ID: 34705640 [TBL] [Abstract][Full Text] [Related]
7. Multi-scale Convolutional Neural Networks for Lung Nodule Classification. Shen W; Zhou M; Yang F; Yang C; Tian J Inf Process Med Imaging; 2015; 24():588-99. PubMed ID: 26221705 [TBL] [Abstract][Full Text] [Related]
8. Robust explanation supervision for false positive reduction in pulmonary nodule detection. Zhao Q; Chang CW; Yang X; Zhao L Med Phys; 2024 Mar; 51(3):1687-1701. PubMed ID: 38224306 [TBL] [Abstract][Full Text] [Related]
9. WS-LungNet: A two-stage weakly-supervised lung cancer detection and diagnosis network. Shen Z; Cao P; Yang J; Zaiane OR Comput Biol Med; 2023 Mar; 154():106587. PubMed ID: 36709519 [TBL] [Abstract][Full Text] [Related]
10. Self-Supervised Transfer Learning Based on Domain Adaptation for Benign-Malignant Lung Nodule Classification on Thoracic CT. Huang H; Wu R; Li Y; Peng C IEEE J Biomed Health Inform; 2022 Aug; 26(8):3860-3871. PubMed ID: 35503850 [TBL] [Abstract][Full Text] [Related]
11. Computer-Aided Diagnosis (CAD) of Pulmonary Nodule of Thoracic CT Image Using Transfer Learning. Zhang S; Sun F; Wang N; Zhang C; Yu Q; Zhang M; Babyn P; Zhong H J Digit Imaging; 2019 Dec; 32(6):995-1007. PubMed ID: 31044393 [TBL] [Abstract][Full Text] [Related]
12. A manifold learning regularization approach to enhance 3D CT image-based lung nodule classification. Ren Y; Tsai MY; Chen L; Wang J; Li S; Liu Y; Jia X; Shen C Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):287-295. PubMed ID: 31768885 [TBL] [Abstract][Full Text] [Related]
13. Improving Accuracy of Lung Nodule Classification Using Deep Learning with Focal Loss. Tran GS; Nghiem TP; Nguyen VT; Luong CM; Burie JC J Healthc Eng; 2019; 2019():5156416. PubMed ID: 30863524 [TBL] [Abstract][Full Text] [Related]
14. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Ciompi F; de Hoop B; van Riel SJ; Chung K; Scholten ET; Oudkerk M; de Jong PA; Prokop M; van Ginneken B Med Image Anal; 2015 Dec; 26(1):195-202. PubMed ID: 26458112 [TBL] [Abstract][Full Text] [Related]
15. Automated Lung Nodule Detection and Classification Using Deep Learning Combined with Multiple Strategies. Nasrullah N; Sang J; Alam MS; Mateen M; Cai B; Hu H Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31466261 [TBL] [Abstract][Full Text] [Related]
16. A novel fusion algorithm for benign-malignant lung nodule classification on CT images. Ma L; Wan C; Hao K; Cai A; Liu L BMC Pulm Med; 2023 Nov; 23(1):474. PubMed ID: 38012620 [TBL] [Abstract][Full Text] [Related]
17. Incorporating automatically learned pulmonary nodule attributes into a convolutional neural network to improve accuracy of benign-malignant nodule classification. Dai Y; Yan S; Zheng B; Song C Phys Med Biol; 2018 Dec; 63(24):245004. PubMed ID: 30524071 [TBL] [Abstract][Full Text] [Related]
18. 3D multi-view squeeze-and-excitation convolutional neural network for lung nodule classification. Yang Y; Li X; Fu J; Han Z; Gao B Med Phys; 2023 Mar; 50(3):1905-1916. PubMed ID: 36639958 [TBL] [Abstract][Full Text] [Related]
19. Deep CNN models for pulmonary nodule classification: Model modification, model integration, and transfer learning. Zhao X; Qi S; Zhang B; Ma H; Qian W; Yao Y; Sun J J Xray Sci Technol; 2019; 27(4):615-629. PubMed ID: 31227682 [TBL] [Abstract][Full Text] [Related]
20. Classification of benign and malignant lung nodules from CT images based on hybrid features. Zhang G; Yang Z; Gong L; Jiang S; Wang L Phys Med Biol; 2019 Jun; 64(12):125011. PubMed ID: 31141794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]