These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31352206)

  • 61. Highly dispersed MoO(x) on carbon nanotube as support for high performance Pt catalyst towards methanol oxidation.
    Cui ZM; Jiang SP; Li CM
    Chem Commun (Camb); 2011 Aug; 47(29):8418-20. PubMed ID: 21701745
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Heteroatom-Doped Carbon Nanotube and Graphene-Based Electrocatalysts for Oxygen Reduction Reaction.
    Li JC; Hou PX; Liu C
    Small; 2017 Dec; 13(45):. PubMed ID: 28961364
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction.
    Zhou X; Tian Z; Li J; Ruan H; Ma Y; Yang Z; Qu Y
    Nanoscale; 2014 Mar; 6(5):2603-7. PubMed ID: 24477654
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Origin of the Excellent Performance of Ru on Nitrogen-Doped Carbon Nanofibers for CO
    Roldán L; Marco Y; García-Bordejé E
    ChemSusChem; 2017 Mar; 10(6):1139-1144. PubMed ID: 27921378
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nitrogen-doped carbon nanotubes based on melamine-formaldehyde resin as highly efficient catalyst for oxygen reduction reaction.
    Zhang X; Huang Y; Chen X; Gao Q; Zhang W
    J Colloid Interface Sci; 2018 Jan; 509():1-9. PubMed ID: 28881199
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Multi-Walled Carbon Nanotubes as a Catalyst for Gas-Phase Oxidation of Ethanol to Acetaldehyde.
    Wang J; Huang R; Feng Z; Liu H; Su D
    ChemSusChem; 2016 Jul; 9(14):1820-6. PubMed ID: 27282126
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Ordered hierarchically porous carbon codoped with iron and nitrogen as electrocatalyst for the oxygen reduction reaction.
    Deng C; Zhong H; Yao L; Liu S; Xu Z; Zhang H
    ChemSusChem; 2014 Dec; 7(12):3435-41. PubMed ID: 25293508
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Influence of promoter on the catalytic activity of high performance Pd/PATP catalysts.
    Han W; Zhang P; Pan X; Tang Z; Lu G
    J Hazard Mater; 2013 Dec; 263 Pt 2():299-306. PubMed ID: 24225591
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A Facile and Efficient Method to Fabricate Highly Selective Nanocarbon Catalysts for Oxidative Dehydrogenation.
    Zhang Y; Wang J; Rong J; Diao J; Zhang J; Shi C; Liu H; Su D
    ChemSusChem; 2017 Jan; 10(2):353-358. PubMed ID: 28000383
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Carbon nanotube modification of microbial fuel cell electrodes.
    Yazdi AA; D'Angelo L; Omer N; Windiasti G; Lu X; Xu J
    Biosens Bioelectron; 2016 Nov; 85():536-552. PubMed ID: 27213269
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nanostructure and surface composition of Pt and Ru binary catalysts on polyaniline-functionalized carbon nanotubes.
    Lee HY; Vogel W; Chu PP
    Langmuir; 2011 Dec; 27(23):14654-61. PubMed ID: 21916494
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Heteroatom doped mesoporous carbon/graphene nanosheets as highly efficient electrocatalysts for oxygen reduction.
    Xu P; Wu D; Wan L; Hu P; Liu R
    J Colloid Interface Sci; 2014 May; 421():160-4. PubMed ID: 24594045
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Density control and wettability enhancement by functionalizing carbon nanotubes with nickel oxide in aluminum-carbon nanotube system.
    Kim TH; Park MH; Song KW; Bae JH; Lee JW; Lee CD; Yang CW
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7685-8. PubMed ID: 24245315
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of adsorption properties of phosphorus-doped TiO
    Huang R; Zhang S; Ding J; Meng Y; Zhong Q; Kong D; Gu C
    J Colloid Interface Sci; 2019 Oct; 553():647-654. PubMed ID: 31252180
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Electrochemical carbon nanotube filter oxidative performance as a function of surface chemistry.
    Gao G; Vecitis CD
    Environ Sci Technol; 2011 Nov; 45(22):9726-34. PubMed ID: 21967752
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Vanadium oxide decorated carbon nanotubes as a promising support of Pt nanoparticles for methanol electro-oxidation reaction.
    Nouralishahi A; Khodadadi AA; Rashidi AM; Mortazavi Y
    J Colloid Interface Sci; 2013 Mar; 393():291-9. PubMed ID: 23201063
    [TBL] [Abstract][Full Text] [Related]  

  • 77. All carbon hybrid N-doped carbon dots/carbon nanotube structures as an efficient catalyst for the oxygen reduction reaction.
    Nguyen ATN; Shim JH
    RSC Adv; 2021 Mar; 11(21):12520-12530. PubMed ID: 35423825
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biomass-derived nitrogen self-doped porous carbon as effective metal-free catalysts for oxygen reduction reaction.
    Liu X; Zhou Y; Zhou W; Li L; Huang S; Chen S
    Nanoscale; 2015 Apr; 7(14):6136-42. PubMed ID: 25772220
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Electrocatalytic properties of platinum nanoparticles supported on fluorine tin dioxide/multi-walled carbon nanotube composites for methanol electrooxidation in acidic medium.
    Guo DJ; Jing ZH
    J Colloid Interface Sci; 2011 Jul; 359(1):257-60. PubMed ID: 21489549
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Carbon nanotube/raspberry hollow Pd nanosphere hybrids for methanol, ethanol, and formic acid electro-oxidation in alkaline media.
    Liu Z; Zhao B; Guo C; Sun Y; Shi Y; Yang H; Li Z
    J Colloid Interface Sci; 2010 Nov; 351(1):233-8. PubMed ID: 20692672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.