BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31352248)

  • 1. Comparative transcriptome analysis of Rosa chinensis 'Slater's crimson China' provides insights into the crucial factors and signaling pathways in heat stress response.
    Li ZQ; Xing W; Luo P; Zhang FJ; Jin XL; Zhang MH
    Plant Physiol Biochem; 2019 Sep; 142():312-331. PubMed ID: 31352248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological Characteristic Changes and Full-Length Transcriptome of Rose (Rosa chinensis) Roots and Leaves in Response to Drought Stress.
    Li W; Fu L; Geng Z; Zhao X; Liu Q; Jiang X
    Plant Cell Physiol; 2021 Feb; 61(12):2153-2166. PubMed ID: 33165546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome and gene expression analysis during flower blooming in Rosa chinensis 'Pallida'.
    Yan H; Zhang H; Chen M; Jian H; Baudino S; Caissard JC; Bendahmane M; Li S; Zhang T; Zhou N; Qiu X; Wang Q; Tang K
    Gene; 2014 Apr; 540(1):96-103. PubMed ID: 24530310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome of the floral transition in Rosa chinensis 'Old Blush'.
    Guo X; Yu C; Luo L; Wan H; Zhen N; Xu T; Tan J; Pan H; Zhang Q
    BMC Genomics; 2017 Feb; 18(1):199. PubMed ID: 28228130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative transcriptome analysis of the floral transition in Rosa chinensis 'Old Blush' and R. odorata var. gigantea.
    Guo X; Yu C; Luo L; Wan H; Li Y; Wang J; Cheng T; Pan H; Zhang Q
    Sci Rep; 2017 Jul; 7(1):6068. PubMed ID: 28729527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis.
    Han Y; Wan H; Cheng T; Wang J; Yang W; Pan H; Zhang Q
    Sci Rep; 2017 Feb; 7():43382. PubMed ID: 28225056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative RNA-Seq analysis reveals a critical role for brassinosteroids in rose (Rosa hybrida) petal defense against Botrytis cinerea infection.
    Liu X; Cao X; Shi S; Zhao N; Li D; Fang P; Chen X; Qi W; Zhang Z
    BMC Genet; 2018 Aug; 19(1):62. PubMed ID: 30126371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and Characterization of Transcription Factors Involved in Geraniol Biosynthesis in
    Yu J; Liu X; Peng Y; Li Q; Han Y
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of genes and pathways that respond to heat stress in Holstein calves through transcriptome analysis.
    Srikanth K; Kwon A; Lee E; Chung H
    Cell Stress Chaperones; 2017 Jan; 22(1):29-42. PubMed ID: 27848120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide transcriptome analysis of the salt stress tolerance mechanism in Rosa chinensis.
    Tian X; Wang Z; Zhang Q; Ci H; Wang P; Yu L; Jia G
    PLoS One; 2018; 13(7):e0200938. PubMed ID: 30048505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide identification and functional analysis of JmjC domain-containing genes in flower development of Rosa chinensis.
    Dong Y; Lu J; Liu J; Jalal A; Wang C
    Plant Mol Biol; 2020 Mar; 102(4-5):417-430. PubMed ID: 31898146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Transcriptome and Weighted Gene Co-expression Network Analysis Identify Key Transcription Factors of
    Jia X; Feng H; Bu Y; Ji N; Lyu Y; Zhao S
    Front Genet; 2021; 12():690264. PubMed ID: 34335694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of the Transcriptome Response to Heat in the Moss, Physcomitrella patens.
    Elzanati O; Mouzeyar S; Roche J
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32098429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive electrophilic oxylipins trigger a heat stress-like response through HSFA1 transcription factors.
    Muench M; Hsin CH; Ferber E; Berger S; Mueller MJ
    J Exp Bot; 2016 Nov; 67(21):6139-6148. PubMed ID: 27811081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide expression of low temperature response genes in Rosa hybrida L.
    Dos Reis MV; Rouhana LV; Sadeque A; Koga L; Clough SJ; Calla B; Paiva PDO; Korban SS
    Plant Physiol Biochem; 2020 Jan; 146():238-248. PubMed ID: 31765955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress.
    Shi J; Yan B; Lou X; Ma H; Ruan S
    BMC Plant Biol; 2017 Jan; 17(1):26. PubMed ID: 28122503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative transcriptome analysis of Tamarixia radiata (Hymenoptera: Eulophidae) reveals differentially expressed genes upon heat shock.
    Ashraf HJ; Ramos Aguila LC; Ahmed S; Haq IU; Ali H; Ilyas M; Gu S; Wang L
    Comp Biochem Physiol Part D Genomics Proteomics; 2022 Mar; 41():100940. PubMed ID: 34794105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways.
    Swindell WR; Huebner M; Weber AP
    BMC Genomics; 2007 May; 8():125. PubMed ID: 17519032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNAi based transcriptome suggests genes potentially regulated by HSF1 in the Pacific oyster Crassostrea gigas under thermal stress.
    Liu Y; Li L; Huang B; Wang W; Zhang G
    BMC Genomics; 2019 Aug; 20(1):639. PubMed ID: 31395030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic analysis of short-term heat stress response in Pinellia ternata provided novel insights into the improved thermotolerance by spermidine and melatonin.
    Ma G; Zhang M; Xu J; Zhou W; Cao L
    Ecotoxicol Environ Saf; 2020 Oct; 202():110877. PubMed ID: 32574862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.