BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31352311)

  • 21. Recent Progress in Fluorescence Imaging of the Near-Infrared II Window.
    Miao Y; Gu C; Zhu Y; Yu B; Shen Y; Cong H
    Chembiochem; 2018 Dec; 19(24):2522-2541. PubMed ID: 30247795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced near-infrared photoacoustic imaging of silica-coated rare-earth doped nanoparticles.
    Sheng Y; Liao LD; Bandla A; Liu YH; Yuan J; Thakor N; Tan MC
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):340-346. PubMed ID: 27770901
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tunable and Enhanced NIR-II Luminescence from Heavily Doped Rare-Earth Nanoparticles for In Vivo Bioimaging.
    Zhang Z; Yang Y; Zhao M; Lu L; Zhang F; Fan Y
    ACS Appl Bio Mater; 2022 Jun; 5(6):2935-2942. PubMed ID: 35612491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Engineering of an Organic NIR-II Fluorophore with Aggregation-Induced Emission Characteristics for In Vivo Imaging.
    Wu W; Yang Y; Yang Y; Yang Y; Zhang K; Guo L; Ge H; Chen X; Liu J; Feng H
    Small; 2019 May; 15(20):e1805549. PubMed ID: 30925013
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical Imaging in the Second Near Infrared Window for Vascular Bioimaging.
    Wang Z; Wang X; Wan JB; Xu F; Zhao N; Chen M
    Small; 2021 Oct; 17(43):e2103780. PubMed ID: 34643028
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NIR-II fluorescence visualization of ultrasound-induced blood-brain barrier opening for enhanced photothermal therapy against glioblastoma using indocyanine green microbubbles.
    Liang S; Hu D; Li G; Gao D; Li F; Zheng H; Pan M; Sheng Z
    Sci Bull (Beijing); 2022 Nov; 67(22):2316-2326. PubMed ID: 36546222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Maximum Emission Peak Over 1500 nm of Organic Assembly for Blood-Brain Barrier-Crossing NIR-IIb Phototheranostics of Orthotopic Glioblastoma.
    Zhao F; Zhang X; Bai F; Lei S; He G; Huang P; Lin J
    Adv Mater; 2023 Jun; 35(22):e2208097. PubMed ID: 36893436
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rare-Earth-Based Nanoparticles with Simultaneously Enhanced Near-Infrared (NIR)-Visible (Vis) and NIR-NIR Dual-Conversion Luminescence for Multimodal Imaging.
    Ma D; Xu X; Hu M; Wang J; Zhang Z; Yang J; Meng L
    Chem Asian J; 2016 Apr; 11(7):1050-8. PubMed ID: 26788691
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NIR-II Perylene Monoimide-Based Photothermal Agent with Strengthened Donor-Acceptor Conjugation for Deep Orthotopic Glioblastoma Phototheranostics.
    Guan J; Liu C; Ji C; Zhang W; Fan Z; He P; Ouyang Q; Qin M; Yin M
    Small; 2023 May; 19(19):e2300203. PubMed ID: 36775955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging.
    Wang R; Li X; Zhou L; Zhang F
    Angew Chem Int Ed Engl; 2014 Nov; 53(45):12086-90. PubMed ID: 25196421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Silica Cross-Linked Micellar Core--Shell Nanoparticles Encapsulating IR-780 with Strong Bright and Good Biocompatibility for Optical Imaging In Vivo.
    Zhan Y; Cao X; Li Y; Tian J; Liang J; Chen X
    J Biomed Nanotechnol; 2017 Feb; 13(2):144-54. PubMed ID: 29376628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties.
    Zhou J; Sun Y; Du X; Xiong L; Hu H; Li F
    Biomaterials; 2010 Apr; 31(12):3287-95. PubMed ID: 20132982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel small-molecule fluorophores for in vivo NIR-IIa and NIR-IIb imaging.
    Li Q; Ding Q; Li Y; Zeng X; Liu Y; Lu S; Zhou H; Wang X; Wu J; Meng X; Deng Z; Xiao Y
    Chem Commun (Camb); 2020 Mar; 56(22):3289-3292. PubMed ID: 32073036
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasound-sensitizing nanoparticle complex for overcoming the blood-brain barrier: an effective drug delivery system.
    Ha SW; Hwang K; Jin J; Cho AS; Kim TY; Hwang SI; Lee HJ; Kim CY
    Int J Nanomedicine; 2019; 14():3743-3752. PubMed ID: 31213800
    [No Abstract]   [Full Text] [Related]  

  • 35. Non-Invasive Optical Guided Tumor Metastasis/Vessel Imaging by Using Lanthanide Nanoprobe with Enhanced Down-Shifting Emission beyond 1500 nm.
    Li Y; Zeng S; Hao J
    ACS Nano; 2019 Jan; 13(1):248-259. PubMed ID: 30604961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis, Characterization, and Biomedical Applications of a Targeted Dual-Modal Near-Infrared-II Fluorescence and Photoacoustic Imaging Nanoprobe.
    Cheng K; Chen H; Jenkins CH; Zhang G; Zhao W; Zhang Z; Han F; Fung J; Yang M; Jiang Y; Xing L; Cheng Z
    ACS Nano; 2017 Dec; 11(12):12276-12291. PubMed ID: 29202225
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cy5.5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas.
    Chen N; Shao C; Li S; Wang Z; Qu Y; Gu W; Yu C; Ye L
    J Colloid Interface Sci; 2015 Nov; 457():27-34. PubMed ID: 26151564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm.
    Tao Z; Hong G; Shinji C; Chen C; Diao S; Antaris AL; Zhang B; Zou Y; Dai H
    Angew Chem Int Ed Engl; 2013 Dec; 52(49):13002-6. PubMed ID: 24174264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated in vivo optical imaging in the second biological window.
    Tan M; Del Rosal B; Zhang Y; Martín Rodríguez E; Hu J; Zhou Z; Fan R; Ortgies DH; Fernández N; Chaves-Coira I; Núñez Á; Jaque D; Chen G
    Nanoscale; 2018 Sep; 10(37):17771-17780. PubMed ID: 30215442
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Realizing the therapeutic potential of rare earth elements in designing nanoparticles to target and treat glioblastoma.
    Lu VM; McDonald KL; Townley HE
    Nanomedicine (Lond); 2017 Oct; 12(19):2389-2401. PubMed ID: 28868972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.