BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 31352338)

  • 1. Recurrent Saliency Transformation Network for Tiny Target Segmentation in Abdominal CT Scans.
    Xie L; Yu Q; Zhou Y; Wang Y; Fishman EK; Yuille AL
    IEEE Trans Med Imaging; 2020 Feb; 39(2):514-525. PubMed ID: 31352338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic Pancreas Segmentation in CT Images With Distance-Based Saliency-Aware DenseASPP Network.
    Hu P; Li X; Tian Y; Tang T; Zhou T; Bai X; Zhu S; Liang T; Li J
    IEEE J Biomed Health Inform; 2021 May; 25(5):1601-1611. PubMed ID: 32915752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of a Deep Learning Algorithm for Automated Segmentation and Quantification of Traumatic Pelvic Hematomas on CT.
    Dreizin D; Zhou Y; Zhang Y; Tirada N; Yuille AL
    J Digit Imaging; 2020 Feb; 33(1):243-251. PubMed ID: 31172331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion.
    Wang Y; Zhou Y; Shen W; Park S; Fishman EK; Yuille AL
    Med Image Anal; 2019 Jul; 55():88-102. PubMed ID: 31035060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust and efficient abdominal CT segmentation using shape constrained multi-scale attention network.
    Tong N; Xu Y; Zhang J; Gou S; Li M
    Phys Med; 2023 Jun; 110():102595. PubMed ID: 37178624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extension-contraction transformation network for pancreas segmentation in abdominal CT scans.
    Zheng Y; Luo J
    Comput Biol Med; 2023 Jan; 152():106410. PubMed ID: 36516578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pancreas Segmentation in Abdominal CT Scans using Inter-/Intra-Slice Contextual Information with a Cascade Neural Network.
    Yang Z; Zhang L; Zhang M; Feng J; Wu Z; Ren F; Lv Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5937-5940. PubMed ID: 31947200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical combinatorial deep learning architecture for pancreas segmentation of medical computed tomography cancer images.
    Fu M; Wu W; Hong X; Liu Q; Jiang J; Ou Y; Zhao Y; Gong X
    BMC Syst Biol; 2018 Apr; 12(Suppl 4):56. PubMed ID: 29745840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optimized two-stage cascaded deep neural network for adrenal segmentation on CT images.
    Luo G; Yang Q; Chen T; Zheng T; Xie W; Sun H
    Comput Biol Med; 2021 Sep; 136():104749. PubMed ID: 34388467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MAD-UNet: A deep U-shaped network combined with an attention mechanism for pancreas segmentation in CT images.
    Li W; Qin S; Li F; Wang L
    Med Phys; 2021 Jan; 48(1):329-341. PubMed ID: 33222222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Multi-Organ Segmentation From 3D Abdominal CT Images With Lightweight Network and Knowledge Distillation.
    Zhao Q; Zhong L; Xiao J; Zhang J; Chen Y; Liao W; Zhang S; Wang G
    IEEE Trans Med Imaging; 2023 Sep; 42(9):2513-2523. PubMed ID: 37030798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-scale U-like network with attention mechanism for automatic pancreas segmentation.
    Yan Y; Zhang D
    PLoS One; 2021; 16(5):e0252287. PubMed ID: 34043732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-paced DenseNet with boundary constraint for automated multi-organ segmentation on abdominal CT images.
    Tong N; Gou S; Niu T; Yang S; Sheng K
    Phys Med Biol; 2020 Jul; 65(13):135011. PubMed ID: 32657281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An application of cascaded 3D fully convolutional networks for medical image segmentation.
    Roth HR; Oda H; Zhou X; Shimizu N; Yang Y; Hayashi Y; Oda M; Fujiwara M; Misawa K; Mori K
    Comput Med Imaging Graph; 2018 Jun; 66():90-99. PubMed ID: 29573583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation.
    Roth HR; Lu L; Lay N; Harrison AP; Farag A; Sohn A; Summers RM
    Med Image Anal; 2018 Apr; 45():94-107. PubMed ID: 29427897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coarse-to-fine airway segmentation using multi information fusion network and CNN-based region growing.
    Guo J; Fu R; Pan L; Zheng S; Huang L; Zheng B; He B
    Comput Methods Programs Biomed; 2022 Mar; 215():106610. PubMed ID: 35077902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graph-enhanced U-Net for semi-supervised segmentation of pancreas from abdomen CT scan.
    Liu S; Liang S; Huang X; Yuan X; Zhong T; Zhang Y
    Phys Med Biol; 2022 Jul; 67(15):. PubMed ID: 35892477
    [No Abstract]   [Full Text] [Related]  

  • 19. Segmentation of liver tumors with abdominal computed tomography using fully convolutional networks.
    Chen CI; Lu NH; Huang YH; Liu KY; Hsu SY; Matsushima A; Wang YM; Chen TB
    J Xray Sci Technol; 2022; 30(5):953-966. PubMed ID: 35754254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Dimensional Cascaded Net with Uncertain Probability Reduction for Abdominal Multi-Organ Segmentation in CT Sequences.
    Li C; Mao Y; Guo Y; Li J; Wang Y
    Comput Methods Programs Biomed; 2022 Jun; 221():106887. PubMed ID: 35597204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.