These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 31352524)

  • 41. Antagonistic effects of growing season and autumn temperatures on the timing of leaf coloration in winter deciduous trees.
    Liu G; Chen X; Zhang Q; Lang W; Delpierre N
    Glob Chang Biol; 2018 Aug; 24(8):3537-3545. PubMed ID: 29460318
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modeling leaf senescence of deciduous tree species in Europe.
    Liu Q; Piao S; Campioli M; Gao M; Fu YH; Wang K; He Y; Li X; Janssens IA
    Glob Chang Biol; 2020 Jul; 26(7):4104-4118. PubMed ID: 32329935
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Responses of Autumn Phenology to Climate Change and the Correlations of Plant Hormone Regulation.
    Zhang S; Dai J; Ge Q
    Sci Rep; 2020 Jun; 10(1):9039. PubMed ID: 32494031
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differences in leaf phenology between juvenile and adult trees in a temperate deciduous forest.
    Augspurger CK; Bartlett EA
    Tree Physiol; 2003 Jun; 23(8):517-25. PubMed ID: 12730043
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Low temperature and short daylength interact to affect the leaf senescence of two temperate tree species.
    Wang H; Gao C; Ge Q
    Tree Physiol; 2022 Nov; 42(11):2252-2265. PubMed ID: 35708584
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nutrient availability alters the correlation between spring leaf-out and autumn leaf senescence dates.
    Fu YH; Piao S; Delpierre N; Hao F; Hänninen H; Geng X; Peñuelas J; Zhang X; Janssens IA; Campioli M
    Tree Physiol; 2019 Aug; 39(8):1277-1284. PubMed ID: 30989235
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Timeline of autumn phenology in temperate deciduous trees.
    Dox I; Gričar J; Marchand LJ; Leys S; Zuccarini P; Geron C; Prislan P; Mariën B; Fonti P; Lange H; Peñuelas J; Van den Bulcke J; Campioli M
    Tree Physiol; 2020 Jul; 40(8):1001-1013. PubMed ID: 32348497
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Early spring onset increases carbon uptake more than late fall senescence: modeling future phenological change in a US northern deciduous forest.
    Teets A; Bailey AS; Hufkens K; Ollinger S; Schädel C; Seyednasrollah B; Richardson AD
    Oecologia; 2023 Jan; 201(1):241-257. PubMed ID: 36525137
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Shifting and extension of phenological periods with increasing temperature along elevational transects in southern Bavaria.
    Schuster C; Estrella N; Menzel A
    Plant Biol (Stuttg); 2014 Mar; 16(2):332-44. PubMed ID: 23957276
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phenology of temperate trees in tropical climates.
    Borchert R; Robertson K; Schwartz MD; Williams-Linera G
    Int J Biometeorol; 2005 Sep; 50(1):57-65. PubMed ID: 15812667
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Leaf-out phenology of temperate woody plants: from trees to ecosystems.
    Polgar CA; Primack RB
    New Phytol; 2011 Sep; 191(4):926-941. PubMed ID: 21762163
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.
    Michelot A; Simard S; Rathgeber C; Dufrêne E; Damesin C
    Tree Physiol; 2012 Aug; 32(8):1033-45. PubMed ID: 22718524
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chilled to be forced: the best dose to wake up buds from winter dormancy.
    Baumgarten F; Zohner CM; Gessler A; Vitasse Y
    New Phytol; 2021 May; 230(4):1366-1377. PubMed ID: 33577087
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Increased exposure to chilling advances the time to budburst in North American tree species.
    Nanninga C; Buyarski CR; Pretorius AM; Montgomery RA
    Tree Physiol; 2017 Dec; 37(12):1727-1738. PubMed ID: 29099953
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Increased autumn productivity permits temperate trees to compensate for spring frost damage.
    Zohner CM; Rockinger A; Renner SS
    New Phytol; 2019 Jan; 221(2):789-795. PubMed ID: 30240028
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Shortened temperature-relevant period of spring leaf-out in temperate-zone trees.
    Fu YH; Geng X; Hao F; Vitasse Y; Zohner CM; Zhang X; Zhou X; Yin G; Peñuelas J; Piao S; Janssens IA
    Glob Chang Biol; 2019 Dec; 25(12):4282-4290. PubMed ID: 31368203
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Frost hardening and dehardening potential in temperate trees from winter to budburst.
    Vitra A; Lenz A; Vitasse Y
    New Phytol; 2017 Oct; 216(1):113-123. PubMed ID: 28737248
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Climate warming increases spring phenological differences among temperate trees.
    Geng X; Fu YH; Hao F; Zhou X; Zhang X; Yin G; Vitasse Y; Piao S; Niu K; De Boeck HJ; Menzel A; Peñuelas J
    Glob Chang Biol; 2020 Oct; 26(10):5979-5987. PubMed ID: 32757456
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Determining past leaf-out times of New England's deciduous forests from herbarium specimens.
    Everill PH; Primack RB; Ellwood ER; Melaas EK
    Am J Bot; 2014 Aug; 101(8):1293-300. PubMed ID: 25156979
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detecting the onset of autumn leaf senescence in deciduous forest trees of the temperate zone.
    Mariën B; Balzarolo M; Dox I; Leys S; Lorène MJ; Geron C; Portillo-Estrada M; AbdElgawad H; Asard H; Campioli M
    New Phytol; 2019 Oct; 224(1):166-176. PubMed ID: 31209882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.