BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 31353123)

  • 21. Clonal evaluation of early onset prostate cancer by expression profiling of ERG, SPINK1, ETV1, and ETV4 on whole-mount radical prostatectomy tissue.
    Lu Z; Williamson SR; Carskadon S; Arachchige PD; Dhamdhere G; Schultz DS; Stricker H; Peabody JO; Jeong W; Chitale DA; Bismar TA; Rogers CG; Menon M; Gupta NS; Palanisamy N
    Prostate; 2020 Jan; 80(1):38-50. PubMed ID: 31584209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer.
    Nacerddine K; Beaudry JB; Ginjala V; Westerman B; Mattiroli F; Song JY; van der Poel H; Ponz OB; Pritchard C; Cornelissen-Steijger P; Zevenhoven J; Tanger E; Sixma TK; Ganesan S; van Lohuizen M
    J Clin Invest; 2012 May; 122(5):1920-32. PubMed ID: 22505453
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SPOP Mutation Drives Prostate Tumorigenesis In Vivo through Coordinate Regulation of PI3K/mTOR and AR Signaling.
    Blattner M; Liu D; Robinson BD; Huang D; Poliakov A; Gao D; Nataraj S; Deonarine LD; Augello MA; Sailer V; Ponnala L; Ittmann M; Chinnaiyan AM; Sboner A; Chen Y; Rubin MA; Barbieri CE
    Cancer Cell; 2017 Mar; 31(3):436-451. PubMed ID: 28292441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function.
    Gui B; Gui F; Takai T; Feng C; Bai X; Fazli L; Dong X; Liu S; Zhang X; Zhang W; Kibel AS; Jia L
    Proc Natl Acad Sci U S A; 2019 Jul; 116(29):14573-14582. PubMed ID: 31266892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of ERG and SPINK1 expression among incidental and metastatic prostate cancer in Japanese men.
    Koide H; Kimura T; Inaba H; Sato S; Iwatani K; Yorozu T; Furusato B; Kamata Y; Miki J; Kiyota H; Takahashi H; Egawa S
    Prostate; 2019 Jan; 79(1):3-8. PubMed ID: 30051483
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New Hope in Prostate Cancer Precision Medicine? miRNA Replacement and Epigenetics.
    Bjartell A
    Clin Cancer Res; 2019 May; 25(9):2679-2681. PubMed ID: 30808772
    [No Abstract]   [Full Text] [Related]  

  • 27. The phytochemical 3,3'-diindolylmethane decreases expression of AR-controlled DNA damage repair genes through repressive chromatin modifications and is associated with DNA damage in prostate cancer cells.
    Palomera-Sanchez Z; Watson GW; Wong CP; Beaver LM; Williams DE; Dashwood RH; Ho E
    J Nutr Biochem; 2017 Sep; 47():113-119. PubMed ID: 28582660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity.
    Beltran H; Yelensky R; Frampton GM; Park K; Downing SR; MacDonald TY; Jarosz M; Lipson D; Tagawa ST; Nanus DM; Stephens PJ; Mosquera JM; Cronin MT; Rubin MA
    Eur Urol; 2013 May; 63(5):920-6. PubMed ID: 22981675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular Discriminators of Racial Disparities in Prostate Cancer.
    Ateeq B; Bhatia V; Goel S
    Trends Cancer; 2016 Mar; 2(3):116-120. PubMed ID: 28741531
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting poly(ADP-ribose) polymerase and the c-Myb-regulated DNA damage response pathway in castration-resistant prostate cancer.
    Li L; Chang W; Yang G; Ren C; Park S; Karantanos T; Karanika S; Wang J; Yin J; Shah PK; Takahiro H; Dobashi M; Zhang W; Efstathiou E; Maity SN; Aparicio AM; Li Ning Tapia EM; Troncoso P; Broom B; Xiao L; Lee HS; Lee JS; Corn PG; Navone N; Thompson TC
    Sci Signal; 2014 May; 7(326):ra47. PubMed ID: 24847116
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Epigenetic Silencing of miRNA-338-5p and miRNA-421 Drives SPINK1-Positive Prostate Cancer.
    Bhatia V; Yadav A; Tiwari R; Nigam S; Goel S; Carskadon S; Gupta N; Goel A; Palanisamy N; Ateeq B
    Clin Cancer Res; 2019 May; 25(9):2755-2768. PubMed ID: 30587549
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4.
    Dai X; Gan W; Li X; Wang S; Zhang W; Huang L; Liu S; Zhong Q; Guo J; Zhang J; Chen T; Shimizu K; Beca F; Blattner M; Vasudevan D; Buckley DL; Qi J; Buser L; Liu P; Inuzuka H; Beck AH; Wang L; Wild PJ; Garraway LA; Rubin MA; Barbieri CE; Wong KK; Muthuswamy SK; Huang J; Chen Y; Bradner JE; Wei W
    Nat Med; 2017 Sep; 23(9):1063-1071. PubMed ID: 28805820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MAPK inhibitors induce serine peptidase inhibitor Kazal type 1 (SPINK1) secretion in BRAF V600E-mutant colorectal adenocarcinoma.
    Räsänen K; Dang KX; Mustonen H; Ho TH; Lintula S; Koistinen H; Stenman UH; Haglund C; Stenman J
    Mol Oncol; 2018 Feb; 12(2):224-238. PubMed ID: 29193645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual functions of SPOP and ERG dictate androgen therapy responses in prostate cancer.
    Bernasocchi T; El Tekle G; Bolis M; Mutti A; Vallerga A; Brandt LP; Spriano F; Svinkina T; Zoma M; Ceserani V; Rinaldi A; Janouskova H; Bossi D; Cavalli M; Mosole S; Geiger R; Dong Z; Yang CG; Albino D; Rinaldi A; Schraml P; Linder S; Carbone GM; Alimonti A; Bertoni F; Moch H; Carr SA; Zwart W; Kruithof-de Julio M; Rubin MA; Udeshi ND; Theurillat JP
    Nat Commun; 2021 Feb; 12(1):734. PubMed ID: 33531470
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Poly (ADP-ribose) polymerase inhibitor: an evolving paradigm in the treatment of prostate cancer.
    Zhang J
    Asian J Androl; 2014; 16(3):401-6. PubMed ID: 24589464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ets-1 interacts through a similar binding interface with Ku70 and Poly (ADP-Ribose) Polymerase-1.
    Choul-Li S; Legrand AJ; Bidon B; Vicogne D; Villeret V; Aumercier M
    Biosci Biotechnol Biochem; 2018 Oct; 82(10):1753-1759. PubMed ID: 29912634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oncogenic ETS Factors in Prostate Cancer.
    Nicholas TR; Strittmatter BG; Hollenhorst PC
    Adv Exp Med Biol; 2019; 1210():409-436. PubMed ID: 31900919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis.
    Bose R; Karthaus WR; Armenia J; Abida W; Iaquinta PJ; Zhang Z; Wongvipat J; Wasmuth EV; Shah N; Sullivan PS; Doran MG; Wang P; Patruno A; Zhao Y; ; Zheng D; Schultz N; Sawyers CL
    Nature; 2017 Jun; 546(7660):671-675. PubMed ID: 28614298
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PARP Inhibitors in Prostate Cancer.
    Ramakrishnan Geethakumari P; Schiewer MJ; Knudsen KE; Kelly WK
    Curr Treat Options Oncol; 2017 Jun; 18(6):37. PubMed ID: 28540598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dysregulation of INF2-mediated mitochondrial fission in SPOP-mutated prostate cancer.
    Jin X; Wang J; Gao K; Zhang P; Yao L; Tang Y; Tang L; Ma J; Xiao J; Zhang E; Zhu J; Zhang B; Zhao SM; Li Y; Ren S; Huang H; Yu L; Wang C
    PLoS Genet; 2017 Apr; 13(4):e1006748. PubMed ID: 28448495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.