BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 31353389)

  • 1. Single-particle enumeration-based ultrasensitive enzyme activity quantification with fluorescent polymer nanoparticles.
    Han Y; Ye Z; Wang F; Chen T; Wei L; Chen L; Xiao L
    Nanoscale; 2019 Aug; 11(31):14793-14801. PubMed ID: 31353389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A ratiometric fluorescence probe based on graphene quantum dots and o-phenylenediamine for highly sensitive detection of acetylcholinesterase activity.
    Ye M; Lin B; Yu Y; Li H; Wang Y; Zhang L; Cao Y; Guo M
    Mikrochim Acta; 2020 Aug; 187(9):511. PubMed ID: 32833082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical and fluorescent dual-mode sensor of acetylcholinesterase activity and inhibition based on MnO
    Kim SG; Lee HK; Subba SH; Oh MH; Lee G; Park SY
    Anal Chim Acta; 2023 May; 1257():341171. PubMed ID: 37062569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Particle Enumeration-Based Sensitive Glutathione S-Transferase Assay with Fluorescent Conjugated Polymer Nanoparticle.
    Han Y; Chen T; Li Y; Chen L; Wei L; Xiao L
    Anal Chem; 2019 Sep; 91(17):11146-11153. PubMed ID: 31402640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidase-mimicking activity of ultrathin MnO
    Yan X; Song Y; Wu X; Zhu C; Su X; Du D; Lin Y
    Nanoscale; 2017 Feb; 9(6):2317-2323. PubMed ID: 28134376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold nanoclusters-Cu(2+) ensemble-based fluorescence turn-on and real-time assay for acetylcholinesterase activity and inhibitor screening.
    Sun J; Yang X
    Biosens Bioelectron; 2015 Dec; 74():177-82. PubMed ID: 26141104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutathione regulation-based dual-functional upconversion sensing-platform for acetylcholinesterase activity and cadmium ions.
    Fang A; Chen H; Li H; Liu M; Zhang Y; Yao S
    Biosens Bioelectron; 2017 Jan; 87():545-551. PubMed ID: 27611473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A thiamine-triggered fluormetric assay for acetylcholinesterase activity and inhibitor screening based on oxidase-like activity of MnO
    Xiao T; Wang S; Yan M; Huang J; Yang X
    Talanta; 2021 Jan; 221():121362. PubMed ID: 33076048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphitic-phase C
    Liu B; Chen J; Peng Y; Xiao W; Peng Z; Qiu P
    J Environ Sci Health B; 2022; 57(6):441-449. PubMed ID: 35414329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MnO
    Zhang XP; Xu W; Wang JH; Shu Y
    Analyst; 2022 Sep; 147(18):4008-4013. PubMed ID: 36001020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive GQDs-MnO
    Deng J; Lu D; Zhang X; Shi G; Zhou T
    Environ Pollut; 2017 May; 224():436-444. PubMed ID: 28258856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Instrument-free and visual detection of organophosphorus pesticide using a smartphone by coupling aggregation-induced emission nanoparticle and two-dimension MnO
    Chen J; Chen X; Zhao J; Liu S; Chi Z
    Biosens Bioelectron; 2020 Dec; 170():112668. PubMed ID: 33032200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulus Response of GQD-Sensitized Tb/GMP ICP Nanoparticles with Dual-Responsive Ratiometric Fluorescence: Toward Point-of-Use Analysis of Acetylcholinesterase and Organophosphorus Pesticide Poisoning with Acetylcholinesterase as a Biomarker.
    Ma R; Xu M; Liu C; Shi G; Deng J; Zhou T
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42119-42128. PubMed ID: 32805836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MnO
    Yan X; Song Y; Zhu C; Li H; Du D; Su X; Lin Y
    Anal Chem; 2018 Feb; 90(4):2618-2624. PubMed ID: 29237266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rolling circle amplification promoted magneto-controlled photoelectrochemical biosensor for organophosphorus pesticides based on dissolution of core-shell MnO
    Tang J; Li J; Xiong P; Sun Y; Zeng Z; Tian X; Tang D
    Mikrochim Acta; 2020 Jul; 187(8):450. PubMed ID: 32676787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resurfaced fluorescent protein as a sensing platform for label-free detection of copper(II) ion and acetylcholinesterase activity.
    Lei C; Wang Z; Nie Z; Deng H; Hu H; Huang Y; Yao S
    Anal Chem; 2015 Feb; 87(3):1974-80. PubMed ID: 25560517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ratiometric fluorescence sensor for organophosphorus pesticide detection based on opposite responses of two fluorescence reagents to MnO
    Yao T; Liu A; Liu Y; Wei M; Wei W; Liu S
    Biosens Bioelectron; 2019 Dec; 145():111705. PubMed ID: 31550630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective and sensitive detection of acetylcholinesterase activity using denatured protein-protected gold nanoclusters as a label-free probe.
    Li H; Guo Y; Xiao L; Chen B
    Analyst; 2014 Jan; 139(1):285-9. PubMed ID: 24251311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ induced metal-enhanced fluorescence: a new strategy for biosensing the total acetylcholinesterase activity in sub-microliter human whole blood.
    Ma K; Lu L; Qi Z; Feng J; Zhuo C; Zhang Y
    Biosens Bioelectron; 2015 Jun; 68():648-653. PubMed ID: 25660508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A colorimetric assay for acetylcholinesterase activity and inhibitor screening based on the thiocholine-induced inhibition of the oxidative power of MnO
    Sun Y; Tan H; Li Y
    Mikrochim Acta; 2018 Sep; 185(10):446. PubMed ID: 30187211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.