These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 31353559)
1. Cyanidin and cyanidin-3-glucoside derived from Vigna unguiculata act as noncompetitive inhibitors of pancreatic lipase. Vijayaraj P; Nakagawa H; Yamaki K J Food Biochem; 2019 Mar; 43(3):e12774. PubMed ID: 31353559 [TBL] [Abstract][Full Text] [Related]
2. Effects of a Myrciaria jaboticaba peel extract on starch and triglyceride absorption and the role of cyanidin-3-O-glucoside. Alves Castilho P; Bracht L; Barros L; Albuquerque BR; Dias MI; Ferreira ICFR; Comar JF; Barlati Vieira da Silva T; Peralta RM; Sá-Nakanishi AB; Bracht A Food Funct; 2021 Mar; 12(6):2644-2659. PubMed ID: 33645616 [TBL] [Abstract][Full Text] [Related]
3. Discovery of anthocyanins from cranberry extract as pancreatic lipase inhibitors using a combined approach of ultrafiltration, molecular simulation and spectroscopy. Xie L; Xie J; Xu Y; Chen W Food Funct; 2020 Oct; 11(10):8527-8536. PubMed ID: 33000849 [TBL] [Abstract][Full Text] [Related]
4. Phenolic antioxidants in some Vigna species of legumes and their distinct inhibitory effects on α-glucosidase and pancreatic lipase activities. Sreerama YN; Takahashi Y; Yamaki K J Food Sci; 2012 Sep; 77(9):C927-33. PubMed ID: 22889371 [TBL] [Abstract][Full Text] [Related]
5. Inhibitory effects of muscadine anthocyanins on α-glucosidase and pancreatic lipase activities. You Q; Chen F; Wang X; Luo PG; Jiang Y J Agric Food Chem; 2011 Sep; 59(17):9506-11. PubMed ID: 21797278 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the synergistic inhibitory effect of cyanidin-3-O-glucoside and catechin on pancreatic lipase. Wang Y; Chen L; Liu H; Xie J; Yin W; Xu Z; Ma H; Wu W; Zheng M; Liu M; Liu J Food Chem; 2023 Mar; 404(Pt B):134672. PubMed ID: 36323025 [TBL] [Abstract][Full Text] [Related]
7. Secoiridoids from the stem barks of Fraxinus rhynchophylla with pancreatic lipase inhibitory activity. Ahn JH; Shin E; Liu Q; Kim SB; Choi KM; Yoo HS; Hwang BY; Lee MK Nat Prod Res; 2013; 27(12):1132-5. PubMed ID: 22840217 [TBL] [Abstract][Full Text] [Related]
8. A comparison of two determination methods for studying degradation kinetics of the major anthocyanins from blood orange. Cao S; Liu L; Pan S; Lu Q; Xu X J Agric Food Chem; 2009 Jan; 57(1):245-9. PubMed ID: 19099393 [TBL] [Abstract][Full Text] [Related]
9. Inhibitory Effect of Persimmon Tannin on Pancreatic Lipase and the Underlying Mechanism in Vitro. Zhu W; Jia Y; Peng J; Li CM J Agric Food Chem; 2018 Jun; 66(24):6013-6021. PubMed ID: 29806464 [TBL] [Abstract][Full Text] [Related]
10. Black rice and anthocyanins induce inhibition of cholesterol absorption in vitro. Yao SL; Xu Y; Zhang YY; Lu YH Food Funct; 2013 Nov; 4(11):1602-8. PubMed ID: 24056583 [TBL] [Abstract][Full Text] [Related]
11. Enzymatic Acylation of Anthocyanin Isolated from Black Rice with Methyl Aromatic Acid Ester as Donor: Stability of the Acylated Derivatives. Yan Z; Li C; Zhang L; Liu Q; Ou S; Zeng X J Agric Food Chem; 2016 Feb; 64(5):1137-43. PubMed ID: 26766135 [TBL] [Abstract][Full Text] [Related]
12. Characterization of anthocyanins and anthocyanidins in purple-fleshed sweetpotatoes by HPLC-DAD/ESI-MS/MS. Truong VD; Deighton N; Thompson RT; McFeeters RF; Dean LO; Pecota KV; Yencho GC J Agric Food Chem; 2010 Jan; 58(1):404-10. PubMed ID: 20017481 [TBL] [Abstract][Full Text] [Related]
13. Protective effects of cyanidin-3-O-glucoside from blackberry extract against peroxynitrite-induced endothelial dysfunction and vascular failure. Serraino I; Dugo L; Dugo P; Mondello L; Mazzon E; Dugo G; Caputi AP; Cuzzocrea S Life Sci; 2003 Jul; 73(9):1097-114. PubMed ID: 12818719 [TBL] [Abstract][Full Text] [Related]
14. Cyanidin-3-rutinoside acts as a natural inhibitor of intestinal lipid digestion and absorption. Thilavech T; Adisakwattana S BMC Complement Altern Med; 2019 Sep; 19(1):242. PubMed ID: 31488210 [TBL] [Abstract][Full Text] [Related]
15. Monte Carlo modelling of non-isothermal degradation of two cyanidin-based anthocyanins in aqueous system at high temperatures and its impact on antioxidant capacities. Sui X; Zhou W Food Chem; 2014 Apr; 148():342-50. PubMed ID: 24262567 [TBL] [Abstract][Full Text] [Related]
16. Genetic Diversity for Quercetin, Myricetin, Cyanidin, and Delphinidin Concentrations in 38 Blackeye Pea ( Morris JB; Tonnis BD; Wang ML; Bhattarai U J Diet Suppl; 2023; 20(5):673-688. PubMed ID: 35615864 [TBL] [Abstract][Full Text] [Related]
17. An examination of anthocyanins' and anthocyanidins' affinity for cannabinoid receptors. Korte G; Dreiseitel A; Schreier P; Oehme A; Locher S; Hajak G; Sand PG J Med Food; 2009 Dec; 12(6):1407-10. PubMed ID: 20041802 [TBL] [Abstract][Full Text] [Related]
18. Isolation and free-radical-scavenging properties of cyanidin 3-O-glycosides from the fruits of Ribes biebersteinii Berl. Delazar A; Khodaie L; Afshar J; Nahar L; Sarker SD Acta Pharm; 2010 Mar; 60(1):1-11. PubMed ID: 20228037 [TBL] [Abstract][Full Text] [Related]
19. Hemisynthesis of Anthocyanin Phase II Metabolites by Porcine Liver Enzymes. Schmitt S; Tratzka S; Schieber A; Passon M J Agric Food Chem; 2019 Jun; 67(22):6177-6189. PubMed ID: 31083903 [TBL] [Abstract][Full Text] [Related]
20. Integrated Metabolomics and Transcriptomics Analyses Reveal the Molecular Mechanisms Underlying the Accumulation of Anthocyanins and Other Flavonoids in Cowpea Pod ( Li Y; Chen Q; Xie X; Cai Y; Li J; Feng Y; Zhang Y J Agric Food Chem; 2020 Aug; 68(34):9260-9275. PubMed ID: 32709199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]