BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31353560)

  • 21. Distinguishing Galactomyces citri-aurantii from G. geotrichum and characterizing population structure of the two postharvest sour rot pathogens of fruit crops in California.
    McKay AH; Förster H; Adaskaveg JE
    Phytopathology; 2012 May; 102(5):528-38. PubMed ID: 22494250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of resveratrol O-methyltransferase gene in pterostilbene defensing the sour rot of wine grape.
    Ren X; Zhang X; Zhai X; Deng R; Meng J; Li X; Kong Q
    J Food Biochem; 2019 Nov; 43(11):e13016. PubMed ID: 31452220
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biological control of postharvest sour rot of citrus by two antagonistic yeasts.
    Liu X; Fang W; Liu L; Yu T; Lou B; Zheng X
    Lett Appl Microbiol; 2010 Jul; 51(1):30-5. PubMed ID: 20477956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antifungal mechanism of sodium dehydroacetate against Geotrichum citri-aurantii.
    Tang X; Ouyang Q; Jing G; Shao X; Tao N
    World J Microbiol Biotechnol; 2018 Jan; 34(2):29. PubMed ID: 29350302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toxicity and Resistance Potential of Selected Fungicides to Galactomyces and Penicillium spp. Causing Postharvest Fruit Decays of Citrus and Other Crops.
    McKay AH; Förster H; Adaskaveg JE
    Plant Dis; 2012 Jan; 96(1):87-96. PubMed ID: 30731849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First Report of Sour Rot Caused by Geotrichum citri-aurantii on Key Lime (Citrus aurantifolia) in Colima State, Mexico.
    Hernández-Montiel LG; Holguín-Peña RJ; Latisnere-Barragan H
    Plant Dis; 2010 Apr; 94(4):488. PubMed ID: 30754509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cinnamaldehyde promotes the defense response in postharvest citrus fruit inoculated with Penicillium digitatum and Geotrichum citri-aurantii.
    Duan B; Gao Z; Reymick OO; Ouyang Q; Chen Y; Long C; Yang B; Tao N
    Pestic Biochem Physiol; 2021 Nov; 179():104976. PubMed ID: 34802526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytosporone B as a Biological Preservative: Purification, Fungicidal Activity and Mechanism of Action against
    Yin C; Liu H; Shan Y; Gupta VK; Jiang Y; Zhang W; Tan H; Gong L
    Biomolecules; 2019 Mar; 9(4):. PubMed ID: 30934892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of arginine on the biocontrol efficiency of Metschnikowia citriensis against Geotrichum citri-aurantii causing sour rot of postharvest citrus fruit.
    Wang S; Zhang H; Qi T; Deng L; Yi L; Zeng K
    Food Microbiol; 2022 Feb; 101():103888. PubMed ID: 34579848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antifungal activity of Moroccan medicinal plants against citrus sour rot agent Geotrichum candidum.
    Talibi I; Askarne L; Boubaker H; Boudyach EH; Msanda F; Saadi B; Ben Aoumar AA
    Lett Appl Microbiol; 2012 Aug; 55(2):155-61. PubMed ID: 22670562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification of a killer toxin from Aureobasidium pullulans for the biocontrol of phytopathogens.
    Moura VS; Pollettini FL; Ferraz LP; Mazzi MV; Kupper KC
    J Basic Microbiol; 2021 Feb; 61(2):77-87. PubMed ID: 33373080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Postharvest sour rot control in lemon fruit by natamycin and an Allium extract.
    Fernández G; Sbres M; Lado J; Pérez-Faggiani E
    Int J Food Microbiol; 2022 May; 368():109605. PubMed ID: 35255244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of major citrus postharvest diseases by sulfur-containing food additives.
    Martínez-Blay V; Taberner V; Pérez-Gago MB; Palou L
    Int J Food Microbiol; 2020 Oct; 330():108713. PubMed ID: 32512363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dimethyl Dicarbonate as a Food Additive Effectively Inhibits
    Liu S; Zhang D; Wang Y; Yang F; Zhao J; Du Y; Tian Z; Long C
    Foods; 2022 Aug; 11(15):. PubMed ID: 35954094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of citrus fungal pathogens by using lactic acid bacteria.
    Gerez CL; Carbajo MS; Rollán G; Torres Leal G; Font de Valdez G
    J Food Sci; 2010 Aug; 75(6):M354-9. PubMed ID: 20722936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cinnamaldehyde Exerts Its Antifungal Activity by Disrupting the Cell Wall Integrity of
    OuYang Q; Duan X; Li L; Tao N
    Front Microbiol; 2019; 10():55. PubMed ID: 30761105
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A combination of cinnamaldehyde and citral greatly alleviates postharvest occurrence of sour rot in citrus fruits without compromising the fruit quality.
    OuYang Q; Reymick OO; Tao N
    J Food Sci Technol; 2022 Jul; 59(7):2776-2783. PubMed ID: 35734136
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of Antimicrobial Peptide Ponericin W1, Thanatin, and Mastatopara-S with
    Zhang H; Liu S; Li X; Wang W; Deng L; Zeng K
    Foods; 2021 Aug; 10(8):. PubMed ID: 34441696
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biofilm production by Aureobasidium pullulans improves biocontrol against sour rot in citrus.
    Klein MN; Kupper KC
    Food Microbiol; 2018 Feb; 69():1-10. PubMed ID: 28941889
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptional profiling analysis of Penicillium digitatum, the causal agent of citrus green mold, unravels an inhibited ergosterol biosynthesis pathway in response to citral.
    OuYang Q; Tao N; Jing G
    BMC Genomics; 2016 Aug; 17(1):599. PubMed ID: 27514516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.