These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 31353639)

  • 1. Fmoc-Dipeptide/Porphyrin Molar Ratio Dictates Energy Transfer Efficiency in Nanostructures Produced by Biocatalytic Co-Assembly.
    Wijerathne NK; Kumar M; Ulijn RV
    Chemistry; 2019 Sep; 25(51):11847-11851. PubMed ID: 31353639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocatalytic self-assembly of supramolecular charge-transfer nanostructures based on n-type semiconductor-appended peptides.
    Nalluri SK; Berdugo C; Javid N; Frederix PW; Ulijn RV
    Angew Chem Int Ed Engl; 2014 Jun; 53(23):5882-7. PubMed ID: 24788665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembled Peptide-Carbon Nitride Hydrogel as a Light-Responsive Scaffold Material.
    Ko JW; Choi WS; Kim J; Kuk SK; Lee SH; Park CB
    Biomacromolecules; 2017 Nov; 18(11):3551-3556. PubMed ID: 28825470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Assembly Propensity Dictates Lifetimes in Transient Naphthalimide-Dipeptide Nanofibers.
    Kumar M; Sementa D; Narang V; Riedo E; Ulijn RV
    Chemistry; 2020 Jul; 26(38):8372-8376. PubMed ID: 32428282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of aliphatic dipeptides coupled with porphyrin and BODIPY chromophores.
    Nikoloudakis E; Mitropoulou K; Landrou G; Charalambidis G; Nikolaou V; Mitraki A; Coutsolelos AG
    Chem Commun (Camb); 2019 Dec; 55(94):14103-14106. PubMed ID: 31603154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence Adaptive Peptide-Polysaccharide Nanostructures by Biocatalytic Self-Assembly.
    Abul-Haija YM; Ulijn RV
    Biomacromolecules; 2015 Nov; 16(11):3473-9. PubMed ID: 26418176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo design of self-assembly hydrogels based on Fmoc-diphenylalanine providing drug release.
    Li X; Zhang H; Liu L; Cao C; Wei P; Yi X; Zhou Y; Lv Q; Zhou D; Yi T
    J Mater Chem B; 2021 Oct; 9(41):8686-8693. PubMed ID: 34617098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of Supramolecular Nanostructures through in Situ Self-Assembly and Post-Assembly Modification of a Biocatalytically Constructed Dipeptide Hydrazide.
    Shintani Y; Ohtomi T; Shibata A; Kitamura Y; Hirosawa KM; Suzuki KGN; Ikeda M
    Chemistry; 2022 Feb; 28(8):e202104421. PubMed ID: 34984747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using experimental and computational energy equilibration to understand hierarchical self-assembly of Fmoc-dipeptide amphiphiles.
    Sasselli IR; Pappas CG; Matthews E; Wang T; Hunt NT; Ulijn RV; Tuttle T
    Soft Matter; 2016 Oct; 12(40):8307-8315. PubMed ID: 27722469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocatalytic Pathway Selection in Transient Tripeptide Nanostructures.
    Pappas CG; Sasselli IR; Ulijn RV
    Angew Chem Int Ed Engl; 2015 Jul; 54(28):8119-23. PubMed ID: 26014441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroactive organic dye incorporating dipeptides in the formation of self-assembled nanofibrous hydrogels.
    Liu YH; Hsu SM; Wu FY; Cheng H; Yeh MY; Lin HC
    Bioconjug Chem; 2014 Oct; 25(10):1794-800. PubMed ID: 25229206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocatalytic self-assembly of nanostructured peptide microparticles using droplet microfluidics.
    Bai S; Debnath S; Gibson K; Schlicht B; Bayne L; Zagnoni M; Ulijn RV
    Small; 2014 Jan; 10(2):285-93. PubMed ID: 23913836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic hydrogen production of porphyrin nanostructures: spheres
    Nikolaou V; Charalambidis G; Coutsolelos AG
    Chem Commun (Camb); 2021 Apr; 57(33):4055-4058. PubMed ID: 33885635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of self-assembled nanostructure-based tetraphenylethylene dipeptides: supramolecular nanobelts as biomimetic hydrogels for cell adhesion and proliferation.
    Talloj SK; Mohammed M; Lin HC
    J Mater Chem B; 2020 Aug; 8(33):7483-7493. PubMed ID: 32667379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introducing chemical functionality in Fmoc-peptide gels for cell culture.
    Jayawarna V; Richardson SM; Hirst AR; Hodson NW; Saiani A; Gough JE; Ulijn RV
    Acta Biomater; 2009 Mar; 5(3):934-43. PubMed ID: 19249724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of self-assembly dipeptide hydrogels and machine learning via their chemical features.
    Li F; Han J; Cao T; Lam W; Fan B; Tang W; Chen S; Fok KL; Li L
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11259-11264. PubMed ID: 31110004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering.
    Eskandari S; Guerin T; Toth I; Stephenson RJ
    Adv Drug Deliv Rev; 2017 Feb; 110-111():169-187. PubMed ID: 27356149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembled Fmoc-peptides as a platform for the formation of nanostructures and hydrogels.
    Orbach R; Adler-Abramovich L; Zigerson S; Mironi-Harpaz I; Seliktar D; Gazit E
    Biomacromolecules; 2009 Sep; 10(9):2646-51. PubMed ID: 19705843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatically activated emulsions stabilised by interfacial nanofibre networks.
    Moreira IP; Sasselli IR; Cannon DA; Hughes M; Lamprou DA; Tuttle T; Ulijn RV
    Soft Matter; 2016 Mar; 12(9):2623-31. PubMed ID: 26905042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Titanium dioxide nanoparticles embedded in assembled dipeptide hydrogels for microfluidic photodegradation.
    Li Y; Zheng T; Du Y; Zhao B; Patel HP; Boldt R; Auernhammer GK; Fery A; Li J; Thiele J
    J Colloid Interface Sci; 2024 Jan; 654(Pt A):405-412. PubMed ID: 37852026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.