These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 31354403)

  • 1. SpykeTorch: Efficient Simulation of Convolutional Spiking Neural Networks With at Most One Spike per Neuron.
    Mozafari M; Ganjtabesh M; Nowzari-Dalini A; Masquelier T
    Front Neurosci; 2019; 13():625. PubMed ID: 31354403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-Spike-Based Visual Categorization Using Reward-Modulated STDP.
    Mozafari M; Kheradpisheh SR; Masquelier T; Nowzari-Dalini A; Ganjtabesh M
    IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):6178-6190. PubMed ID: 29993898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. STDP-based spiking deep convolutional neural networks for object recognition.
    Kheradpisheh SR; Ganjtabesh M; Thorpe SJ; Masquelier T
    Neural Netw; 2018 Mar; 99():56-67. PubMed ID: 29328958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Training Deep Spiking Convolutional Neural Networks With STDP-Based Unsupervised Pre-training Followed by Supervised Fine-Tuning.
    Lee C; Panda P; Srinivasan G; Roy K
    Front Neurosci; 2018; 12():435. PubMed ID: 30123103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule.
    Hao Y; Huang X; Dong M; Xu B
    Neural Netw; 2020 Jan; 121():387-395. PubMed ID: 31593843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An unsupervised STDP-based spiking neural network inspired by biologically plausible learning rules and connections.
    Dong Y; Zhao D; Li Y; Zeng Y
    Neural Netw; 2023 Aug; 165():799-808. PubMed ID: 37418862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supervised Learning in SNN via Reward-Modulated Spike-Timing-Dependent Plasticity for a Target Reaching Vehicle.
    Bing Z; Baumann I; Jiang Z; Huang K; Cai C; Knoll A
    Front Neurorobot; 2019; 13():18. PubMed ID: 31130854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competitive Learning in a Spiking Neural Network: Towards an Intelligent Pattern Classifier.
    Lobov SA; Chernyshov AV; Krilova NP; Shamshin MO; Kazantsev VB
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indirect and direct training of spiking neural networks for end-to-end control of a lane-keeping vehicle.
    Bing Z; Meschede C; Chen G; Knoll A; Huang K
    Neural Netw; 2020 Jan; 121():21-36. PubMed ID: 31526952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised speech recognition through spike-timing-dependent plasticity in a convolutional spiking neural network.
    Dong M; Huang X; Xu B
    PLoS One; 2018; 13(11):e0204596. PubMed ID: 30496179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial Properties of STDP in a Self-Learning Spiking Neural Network Enable Controlling a Mobile Robot.
    Lobov SA; Mikhaylov AN; Shamshin M; Makarov VA; Kazantsev VB
    Front Neurosci; 2020; 14():88. PubMed ID: 32174804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probabilistic Spike Propagation for Efficient Hardware Implementation of Spiking Neural Networks.
    Nallathambi A; Sen S; Raghunathan A; Chandrachoodan N
    Front Neurosci; 2021; 15():694402. PubMed ID: 34335168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ReStoCNet: Residual Stochastic Binary Convolutional Spiking Neural Network for Memory-Efficient Neuromorphic Computing.
    Srinivasan G; Roy K
    Front Neurosci; 2019; 13():189. PubMed ID: 30941003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures.
    Lee C; Sarwar SS; Panda P; Srinivasan G; Roy K
    Front Neurosci; 2020; 14():119. PubMed ID: 32180697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware.
    Zou C; Cui X; Kuang Y; Liu K; Wang Y; Wang X; Huang R
    Front Neurosci; 2021; 15():694170. PubMed ID: 34867142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A bio-inspired hierarchical spiking neural network with biological synaptic plasticity for event camera object recognition].
    Zhou Q; Zheng P; Li X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Aug; 40(4):692-699. PubMed ID: 37666759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Hybrid CMOS-Memristor Spiking Neural Network Supporting Multiple Learning Rules.
    Florini D; Gandolfi D; Mapelli J; Benatti L; Pavan P; Puglisi FM
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):5117-5129. PubMed ID: 36099218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.