BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31354405)

  • 1. Identifying Imaging Markers for Predicting Cognitive Assessments Using Wasserstein Distances Based Matrix Regression.
    Yan J; Deng C; Luo L; Wang X; Yao X; Shen L; Huang H
    Front Neurosci; 2019; 13():668. PubMed ID: 31354405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Alzheimer's Disease Cognitive Assessment via Robust Low-Rank Structured Sparse Model.
    Xu J; Deng C; Gao X; Shen D; Huang H
    IJCAI (U S); 2017 Aug; 2017():3880-3886. PubMed ID: 29681724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized fused group lasso regularized multi-task feature learning for predicting cognitive outcomes in Alzheimers disease.
    Cao P; Liu X; Liu H; Yang J; Zhao D; Huang M; Zaiane O
    Comput Methods Programs Biomed; 2018 Aug; 162():19-45. PubMed ID: 29903486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fused Group Lasso Regularized Multi-Task Feature Learning and Its Application to the Cognitive Performance Prediction of Alzheimer's Disease.
    Liu X; Cao P; Wang J; Kong J; Zhao D
    Neuroinformatics; 2019 Apr; 17(2):271-294. PubMed ID: 30284672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-rank sparse feature selection with incomplete labels for Alzheimer's disease progression prediction.
    Chen Z; Liu Y; Zhang Y; Jin R; Tao J; Chen L
    Comput Biol Med; 2022 Aug; 147():105705. PubMed ID: 35717935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Prediction of Cognitive Outcomes via Globally Aligned Imaging Biomarker Enrichments Over Progressions.
    Lu L; Elbeleidy S; Baker L; Wang H; Shen L; Heng H
    IEEE Trans Biomed Eng; 2021 Nov; 68(11):3336-3346. PubMed ID: 33819146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal Exposure-Response Modeling of Multiple Indicators of Alzheimer's Disease Progression.
    Polhamus DG; Dolton MJ; Rogers JA; Honigberg L; Jin JY; Quartino A
    J Prev Alzheimers Dis; 2023; 10(2):212-222. PubMed ID: 36946448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting task relationships for Alzheimer's disease cognitive score prediction via multi-task learning.
    Liang W; Zhang K; Cao P; Liu X; Yang J; Zaiane OR
    Comput Biol Med; 2023 Jan; 152():106367. PubMed ID: 36516575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network-Guided Sparse Learning for Predicting Cognitive Outcomes from MRI Measures.
    Yan J; Huang H; Risacher SL; Kim S; Inlow M; Moore JH; Saykin AJ; Shen L
    Multimodal Brain Image Anal (2013); 2013; 8159():202-210. PubMed ID: 25927078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis.
    Zhu X; Suk HI; Shen D
    Neuroimage; 2014 Oct; 100():91-105. PubMed ID: 24911377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orthogonal latent space learning with feature weighting and graph learning for multimodal Alzheimer's disease diagnosis.
    Chen Z; Liu Y; Zhang Y; Li Q;
    Med Image Anal; 2023 Feb; 84():102698. PubMed ID: 36462372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discriminative multi-task feature selection for multi-modality classification of Alzheimer's disease.
    Ye T; Zu C; Jie B; Shen D; Zhang D;
    Brain Imaging Behav; 2016 Sep; 10(3):739-49. PubMed ID: 26311394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Matrix-Similarity Based Loss Function and Feature Selection for Alzheimer's Disease Diagnosis.
    Zhu X; Suk HI; Shen D
    Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit; 2014 Jun; 2014():3089-3096. PubMed ID: 26379415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural brain network constrained neuroimaging marker identification for predicting cognitive functions.
    De W; Nie F; Huang H; Yan J; Risacher SL; Saykin AJ; Shen L
    Inf Process Med Imaging; 2013; 23():536-47. PubMed ID: 24683997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel relational regularization feature selection method for joint regression and classification in AD diagnosis.
    Zhu X; Suk HI; Wang L; Lee SW; Shen D;
    Med Image Anal; 2017 May; 38():205-214. PubMed ID: 26674971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint and Long Short-Term Memory Regression of Clinical Scores for Alzheimer's Disease Using Longitudinal Data.
    Yang M; Elazab A; Yang P; Xia Z; Wang T; Lei B
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():281-284. PubMed ID: 31945896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alzheimer's disease diagnosis framework from incomplete multimodal data using convolutional neural networks.
    Abdelaziz M; Wang T; Elazab A
    J Biomed Inform; 2021 Sep; 121():103863. PubMed ID: 34229061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linearized and Kernelized Sparse Multitask Learning for Predicting Cognitive Outcomes in Alzheimer's Disease.
    Liu X; Cao P; Yang J; Zhao D
    Comput Math Methods Med; 2018; 2018():7429782. PubMed ID: 29623103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early detection of Alzheimer's disease using single nucleotide polymorphisms analysis based on gradient boosting tree.
    Ahmed H; Soliman H; Elmogy M
    Comput Biol Med; 2022 Jul; 146():105622. PubMed ID: 35751201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structural MRI markers and cognitive decline in prodromal Alzheimer's disease: a 2-year longitudinal study.
    Wei H; Kong M; Zhang C; Guan L; Ba M;
    Quant Imaging Med Surg; 2018 Nov; 8(10):1004-1019. PubMed ID: 30598878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.