These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 31354458)
1. Topological Modification of Brain Networks Organization in Children With High Intelligence Quotient: A Resting-State fMRI Study. Suprano I; Delon-Martin C; Kocevar G; Stamile C; Hannoun S; Achard S; Badhwar A; Fourneret P; Revol O; Nusbaum F; Sappey-Marinier D Front Hum Neurosci; 2019; 13():241. PubMed ID: 31354458 [TBL] [Abstract][Full Text] [Related]
2. White matter microarchitecture and structural network integrity correlate with children intelligence quotient. Suprano I; Kocevar G; Stamile C; Hannoun S; Fourneret P; Revol O; Nusbaum F; Sappey-Marinier D Sci Rep; 2020 Nov; 10(1):20722. PubMed ID: 33244043 [TBL] [Abstract][Full Text] [Related]
3. Hemispheric Differences in White Matter Microstructure between Two Profiles of Children with High Intelligence Quotient vs. Controls: A Tract-Based Spatial Statistics Study. Nusbaum F; Hannoun S; Kocevar G; Stamile C; Fourneret P; Revol O; Sappey-Marinier D Front Neurosci; 2017; 11():173. PubMed ID: 28420955 [No Abstract] [Full Text] [Related]
4. Personal Income Performance Correlates with Brain Structural Network Modularity but Not Intelligence Quotient. Nusbaum F; Hannoun S; Barile B; Suprano I; Mouchet S; Sappey-Marinier D Brain Connect; 2024 Jun; 14(5):284-293. PubMed ID: 38848246 [No Abstract] [Full Text] [Related]
5. Altered functional connectivity in newly diagnosed benign epilepsy with unilateral or bilateral centrotemporal spikes: A multi-frequency MEG study. Wang P; Li Y; Sun Y; Sun J; Niu K; Zhang K; Xiang J; Chen Q; Hu Z; Wang X Epilepsy Behav; 2021 Sep; 124():108276. PubMed ID: 34547687 [TBL] [Abstract][Full Text] [Related]
6. Corrigendum: Topological Modification of Brain Networks Organization in Children With High Intelligence Quotient: A Resting-State fMRI Study. Suprano I; Delon-Martin C; Kocevar G; Stamile C; Hannoun S; Achard S; Badhwar A; Fourneret P; Revol O; Nusbaum F; Sappey-Marinier D Front Hum Neurosci; 2019; 13():450. PubMed ID: 31998099 [TBL] [Abstract][Full Text] [Related]
7. Topological organization of functional brain networks in healthy children: differences in relation to age, sex, and intelligence. Wu K; Taki Y; Sato K; Hashizume H; Sassa Y; Takeuchi H; Thyreau B; He Y; Evans AC; Li X; Kawashima R; Fukuda H PLoS One; 2013; 8(2):e55347. PubMed ID: 23390528 [TBL] [Abstract][Full Text] [Related]
8. The "Hub Disruption Index," a Reliable Index Sensitive to the Brain Networks Reorganization. A Study of the Contralesional Hemisphere in Stroke. Termenon M; Achard S; Jaillard A; Delon-Martin C Front Comput Neurosci; 2016; 10():84. PubMed ID: 27582702 [TBL] [Abstract][Full Text] [Related]
9. Disruptions in global network segregation and integration in adolescents and young adults with fetal alcohol spectrum disorder. Rodriguez CI; Vergara VM; Calhoun VD; Savage DD; Hamilton DA; Tesche CD; Stephen JM Alcohol Clin Exp Res; 2021 Sep; 45(9):1775-1789. PubMed ID: 34342371 [TBL] [Abstract][Full Text] [Related]
10. The UCLA multimodal connectivity database: a web-based platform for brain connectivity matrix sharing and analysis. Brown JA; Rudie JD; Bandrowski A; Van Horn JD; Bookheimer SY Front Neuroinform; 2012; 6():28. PubMed ID: 23226127 [TBL] [Abstract][Full Text] [Related]
11. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition. Cohen JR; D'Esposito M J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719 [TBL] [Abstract][Full Text] [Related]
12. Impact of Brain Functional Network Properties on Intelligence in Children and Adolescents with Focal Epilepsy: A Resting-state MRI Study. Songjiang L; Tijiang Z; Heng L; Wenjing Z; Bo T; Ganjun S; Maoqiang T; Su L Acad Radiol; 2021 Feb; 28(2):225-232. PubMed ID: 32037257 [TBL] [Abstract][Full Text] [Related]
13. Graph-based network analysis of resting-state functional MRI. Wang J; Zuo X; He Y Front Syst Neurosci; 2010; 4():16. PubMed ID: 20589099 [TBL] [Abstract][Full Text] [Related]
14. Brain Networks and Intelligence: A Graph Neural Network Based Approach to Resting State fMRI Data. Thapaliya B; Akbas E; Chen J; Sapkota R; Ray B; Suresh P; Calhoun V; Liu J ArXiv; 2024 Oct; ():. PubMed ID: 37986729 [TBL] [Abstract][Full Text] [Related]
15. Disrupted Control-Related Functional Brain Networks in Drug-Naive Children with Attention-Deficit/Hyperactivity Disorder. Tao J; Jiang X; Wang X; Liu H; Qian A; Yang C; Chen H; Li J; Ye Q; Wang J; Wang M Front Psychiatry; 2017; 8():246. PubMed ID: 29209238 [TBL] [Abstract][Full Text] [Related]
16. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI. Xu T; Cullen KR; Mueller B; Schreiner MW; Lim KO; Schulz SC; Parhi KK Neuroimage Clin; 2016; 11():302-315. PubMed ID: 26977400 [TBL] [Abstract][Full Text] [Related]
17. Prediction of individual performance and verbal intelligence scores from resting-state fMRI in children and adolescents. He N; Kou C Int J Dev Neurosci; 2024 Nov; 84(7):779-790. PubMed ID: 39294857 [TBL] [Abstract][Full Text] [Related]
18. Resting-State Functional Connectivity and Network Analysis of Cerebellum with Respect to [corrected] IQ and Gender. Pezoulas VC; Zervakis M; Michelogiannis S; Klados MA Front Hum Neurosci; 2017; 11():189. PubMed ID: 28491028 [TBL] [Abstract][Full Text] [Related]
20. Prenatal exposure to ambient PM Sun X; Liu C; Ji H; Li W; Miao M; Yuan W; Yuan Z; Liang H; Kan H Ecotoxicol Environ Saf; 2023 Apr; 255():114813. PubMed ID: 36948012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]