BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31354766)

  • 1. Functional Analysis of Polyprenyl Diphosphate Synthase Genes Involved in Plastoquinone and Ubiquinone Biosynthesis in
    Liu M; Ma Y; Du Q; Hou X; Wang M; Lu S
    Front Plant Sci; 2019; 10():893. PubMed ID: 31354766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SmPPT, a 4-hydroxybenzoate polyprenyl diphosphate transferase gene involved in ubiquinone biosynthesis, confers salt tolerance in Salvia miltiorrhiza.
    Liu M; Chen X; Wang M; Lu S
    Plant Cell Rep; 2019 Dec; 38(12):1527-1540. PubMed ID: 31471635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plastoquinone and Ubiquinone in Plants: Biosynthesis, Physiological Function and Metabolic Engineering.
    Liu M; Lu S
    Front Plant Sci; 2016; 7():1898. PubMed ID: 28018418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of ubiquinone and plastoquinone in the endoplasmic reticulum-Golgi membranes of spinach leaves.
    Swiezewska E; Dallner G; Andersson B; Ernster L
    J Biol Chem; 1993 Jan; 268(2):1494-9. PubMed ID: 8419349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two solanesyl diphosphate synthases with different subcellular localizations and their respective physiological roles in Oryza sativa.
    Ohara K; Sasaki K; Yazaki K
    J Exp Bot; 2010 Jun; 61(10):2683-92. PubMed ID: 20421194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene network reconstruction identifies the authentic trans-prenyl diphosphate synthase that makes the solanesyl moiety of ubiquinone-9 in Arabidopsis.
    Ducluzeau AL; Wamboldt Y; Elowsky CG; Mackenzie SA; Schuurink RC; Basset GJ
    Plant J; 2012 Jan; 69(2):366-75. PubMed ID: 21950843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Pentatricopeptide Repeat Gene Family in
    Li H; Li C; Deng Y; Jiang X; Lu S
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29882758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous determination of in vivo plastoquinone and ubiquinone redox states by HPLC-based analysis.
    Yoshida K; Shibata M; Terashima I; Noguchi K
    Plant Cell Physiol; 2010 May; 51(5):836-41. PubMed ID: 20375106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in vivo characterization of a novel insect decaprenyl diphosphate synthase: a two-major step catalytic mechanism is proposed.
    Zhang H; Li ZX
    Biochem Biophys Res Commun; 2013 Dec; 442(1-2):105-11. PubMed ID: 24246678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of ubiquinone biosynthesis using the yeast coq2 gene confers oxidative stress tolerance in transgenic tobacco.
    Ohara K; Kokado Y; Yamamoto H; Sato F; Yazaki K
    Plant J; 2004 Dec; 40(5):734-43. PubMed ID: 15546356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diverse responses of tanshinone biosynthesis to biotic and abiotic elicitors in hairy root cultures of Salvia miltiorrhiza and Salvia castanea Diels f. tomentosa.
    Yang D; Fang Y; Xia P; Zhang X; Liang Z
    Gene; 2018 Feb; 643():61-67. PubMed ID: 29196256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The AtPPT1 gene encoding 4-hydroxybenzoate polyprenyl diphosphate transferase in ubiquinone biosynthesis is required for embryo development in Arabidopsis thaliana.
    Okada K; Ohara K; Yazaki K; Nozaki K; Uchida N; Kawamukai M; Nojiri H; Yamane H
    Plant Mol Biol; 2004 Jul; 55(4):567-77. PubMed ID: 15604701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of OsPPT1, which encodes p-hydroxybenzoate polyprenyltransferase involved in ubiquinone biosynthesis in Oryza sativa.
    Ohara K; Yamamoto K; Hamamoto M; Sasaki K; Yazaki K
    Plant Cell Physiol; 2006 May; 47(5):581-90. PubMed ID: 16501255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular localization of plastoquinone and ubiquinone synthesis in spinach cells.
    Wanke M; Dallner G; Swiezewska E
    Biochim Biophys Acta; 2000 Jan; 1463(1):188-94. PubMed ID: 10631308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning of the sdsA gene encoding solanesyl diphosphate synthase from Rhodobacter capsulatus and its functional expression in Escherichia coli and Saccharomyces cerevisiae.
    Okada K; Kamiya Y; Zhu X; Suzuki K; Tanaka K; Nakagawa T; Matsuda H; Kawamukai M
    J Bacteriol; 1997 Oct; 179(19):5992-8. PubMed ID: 9324242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Half-life of ubiquinone and plastoquinone in spinach cells.
    Wanke M; Swiezewska E; Dallner G
    Plant Sci; 2000 May; 154(2):183-187. PubMed ID: 10729617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible involvement of 3-hydroxymethylglutaryl-CoA reductase in determining the side-chain length of ubiquinone in rat heart.
    Shimizu S; Yamamoto T; Sugawara H; Kawahara Y; Momose K
    Arch Biochem Biophys; 1991 Jan; 284(1):35-9. PubMed ID: 1846516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological and transcriptome analysis reveal molecular mechanism in Salvia miltiorrhiza leaves of near-isogenic male fertile lines and male sterile lines.
    Wang R; Jiang H; Zhou Z; Guo H; Dong J
    BMC Genomics; 2019 Oct; 20(1):780. PubMed ID: 31655539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological significance of the side chain length of ubiquinone in Saccharomyces cerevisiae.
    Okada K; Kainou T; Matsuda H; Kawamukai M
    FEBS Lett; 1998 Jul; 431(2):241-4. PubMed ID: 9708911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Salvia miltiorrhiza as medicinal model plant].
    Song JY; Luo HM; Li CF; Sun C; Xu J; Chen SL
    Yao Xue Xue Bao; 2013 Jul; 48(7):1099-106. PubMed ID: 24133975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.