These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 31354775)
1. Trait-Based Climate Change Predictions of Vegetation Sensitivity and Distribution in China. Yang Y; Zhao J; Zhao P; Wang H; Wang B; Su S; Li M; Wang L; Zhu Q; Pang Z; Peng C Front Plant Sci; 2019; 10():908. PubMed ID: 31354775 [TBL] [Abstract][Full Text] [Related]
2. A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. Yang Y; Zhu Q; Peng C; Wang H; Xue W; Lin G; Wen Z; Chang J; Wang M; Liu G; Li S Sci Rep; 2016 Apr; 6():24110. PubMed ID: 27052108 [TBL] [Abstract][Full Text] [Related]
3. Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Sakschewski B; von Bloh W; Boit A; Rammig A; Kattge J; Poorter L; Peñuelas J; Thonicke K Glob Chang Biol; 2015 Jul; 21(7):2711-2725. PubMed ID: 25611734 [TBL] [Abstract][Full Text] [Related]
4. A fully traits-based approach to modeling global vegetation distribution. van Bodegom PM; Douma JC; Verheijen LM Proc Natl Acad Sci U S A; 2014 Sep; 111(38):13733-8. PubMed ID: 25225413 [TBL] [Abstract][Full Text] [Related]
5. Global and regional modelling of Arctic-boreal vegetation distribution and its sensitivity to altered forcing. Kittel TGF; Steffen WL; Chapin FS Glob Chang Biol; 2000 Dec; 6(S1):1-18. PubMed ID: 35026933 [TBL] [Abstract][Full Text] [Related]
6. Linking above- and belowground traits to soil and climate variables: an integrated database on China's grassland species. Geng Y; Ma W; Wang L; Baumann F; Kühn P; Scholten T; He JS Ecology; 2017 May; 98(5):1471. PubMed ID: 28241374 [TBL] [Abstract][Full Text] [Related]
7. Vulnerability of forest vegetation to anthropogenic climate change in China. Wan JZ; Wang CJ; Qu H; Liu R; Zhang ZX Sci Total Environ; 2018 Apr; 621():1633-1641. PubMed ID: 29122346 [TBL] [Abstract][Full Text] [Related]
8. Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model. Verheijen LM; Aerts R; Brovkin V; Cavender-Bares J; Cornelissen JH; Kattge J; van Bodegom PM Glob Chang Biol; 2015 Aug; 21(8):3074-86. PubMed ID: 25611824 [TBL] [Abstract][Full Text] [Related]
9. Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis. Reich PB; Wright IJ; Lusk CH Ecol Appl; 2007 Oct; 17(7):1982-8. PubMed ID: 17974336 [TBL] [Abstract][Full Text] [Related]
10. Spatiotemporal dynamics of vegetation in China from 1981 to 2100 from the perspective of hydrothermal factor analysis. Li G; Chen W; Zhang X; Bi P; Yang Z; Shi X; Wang Z Environ Sci Pollut Res Int; 2022 Feb; 29(10):14219-14230. PubMed ID: 34601687 [TBL] [Abstract][Full Text] [Related]
11. Changes in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks. Euskirchen ES; McGuire AD; Chapin FS; Yi S; Thompson CC Ecol Appl; 2009 Jun; 19(4):1022-43. PubMed ID: 19544741 [TBL] [Abstract][Full Text] [Related]
12. Evaluating the responses of forest ecosystems to climate change and CO Song X; Zeng X Ecol Evol; 2017 Feb; 7(3):997-1008. PubMed ID: 28168035 [TBL] [Abstract][Full Text] [Related]
13. Modeling terrestrial carbon and water dynamics across climatic gradients: does plant trait diversity matter? Pappas C; Fatichi S; Burlando P New Phytol; 2016 Jan; 209(1):137-51. PubMed ID: 26389742 [TBL] [Abstract][Full Text] [Related]
14. Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Wullschleger SD; Epstein HE; Box EO; Euskirchen ES; Goswami S; Iversen CM; Kattge J; Norby RJ; van Bodegom PM; Xu X Ann Bot; 2014 Jul; 114(1):1-16. PubMed ID: 24793697 [TBL] [Abstract][Full Text] [Related]
15. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Krishnaswamy J; John R; Joseph S Glob Chang Biol; 2014 Jan; 20(1):203-15. PubMed ID: 23966269 [TBL] [Abstract][Full Text] [Related]
16. A new model to simulate climate-change impacts on forest succession for local land management. Yospin GI; Bridgham SD; Neilson RP; Bolte JP; Bachelet DM; Gould PJ; Harrington CA; Kertis JA; Evers C; Johnson BR Ecol Appl; 2015 Jan; 25(1):226-42. PubMed ID: 26255370 [TBL] [Abstract][Full Text] [Related]
17. Identifying climate thresholds for dominant natural vegetation types at the global scale using machine learning: Average climate versus extremes. Beigaitė R; Tang H; Bryn A; Skarpaas O; Stordal F; Bjerke JW; Žliobaitė I Glob Chang Biol; 2022 Jun; 28(11):3557-3579. PubMed ID: 35212092 [TBL] [Abstract][Full Text] [Related]
18. Future changes in key plant traits across Central Europe vary with biogeographical status, woodiness, and habitat type. Golivets M; Knapp S; Essl F; Lenzner B; Latombe G; Leung B; Kühn I Sci Total Environ; 2024 Jan; 907():167954. PubMed ID: 37866591 [TBL] [Abstract][Full Text] [Related]
19. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling. Feng X; Uriarte M; González G; Reed S; Thompson J; Zimmerman JK; Murphy L Glob Chang Biol; 2018 Jan; 24(1):e213-e232. PubMed ID: 28804989 [TBL] [Abstract][Full Text] [Related]
20. Quantifying leaf-trait covariation and its controls across climates and biomes. Yang Y; Wang H; Harrison SP; Prentice IC; Wright IJ; Peng C; Lin G New Phytol; 2019 Jan; 221(1):155-168. PubMed ID: 30272817 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]