These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 31354776)
1. Rhizobacteria-Mediated Activation of the Fe Deficiency Response in Arabidopsis Roots: Impact on Fe Status and Signaling. Verbon EH; Trapet PL; Kruijs S; Temple-Boyer-Dury C; Rouwenhorst TG; Pieterse CMJ Front Plant Sci; 2019; 10():909. PubMed ID: 31354776 [TBL] [Abstract][Full Text] [Related]
2. β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots. Zamioudis C; Hanson J; Pieterse CM New Phytol; 2014 Oct; 204(2):368-79. PubMed ID: 25138267 [TBL] [Abstract][Full Text] [Related]
3. Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Stringlis IA; Proietti S; Hickman R; Van Verk MC; Zamioudis C; Pieterse CMJ Plant J; 2018 Jan; 93(1):166-180. PubMed ID: 29024173 [TBL] [Abstract][Full Text] [Related]
6. Root-to-shoot iron partitioning in Arabidopsis requires IRON-REGULATED TRANSPORTER1 (IRT1) protein but not its iron(II) transport function. Quintana J; Bernal M; Scholle M; Holländer-Czytko H; Nguyen NT; Piotrowski M; Mendoza-Cózatl DG; Haydon MJ; Krämer U Plant J; 2022 Feb; 109(4):992-1013. PubMed ID: 34839543 [TBL] [Abstract][Full Text] [Related]
7. Cell-type-specific transcriptomics reveals that root hairs and endodermal barriers play important roles in beneficial plant-rhizobacterium interactions. Verbon EH; Liberman LM; Zhou J; Yin J; Pieterse CMJ; Benfey PN; Stringlis IA; de Jonge R Mol Plant; 2023 Jul; 16(7):1160-1177. PubMed ID: 37282370 [TBL] [Abstract][Full Text] [Related]
8. Changes in iron availability in Arabidopsis are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots. Khan MA; Castro-Guerrero NA; McInturf SA; Nguyen NT; Dame AN; Wang J; Bindbeutel RK; Joshi T; Jurisson SS; Nusinow DA; Mendoza-Cozatl DG Plant Cell Environ; 2018 Oct; 41(10):2263-2276. PubMed ID: 29520929 [TBL] [Abstract][Full Text] [Related]
9. OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds. Mendoza-Cózatl DG; Xie Q; Akmakjian GZ; Jobe TO; Patel A; Stacey MG; Song L; Demoin DW; Jurisson SS; Stacey G; Schroeder JI Mol Plant; 2014 Sep; 7(9):1455-1469. PubMed ID: 24880337 [TBL] [Abstract][Full Text] [Related]
10. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. Zamioudis C; Korteland J; Van Pelt JA; van Hamersveld M; Dombrowski N; Bai Y; Hanson J; Van Verk MC; Ling HQ; Schulze-Lefert P; Pieterse CM Plant J; 2015 Oct; 84(2):309-22. PubMed ID: 26307542 [TBL] [Abstract][Full Text] [Related]
11. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Stringlis IA; Yu K; Feussner K; de Jonge R; Van Bentum S; Van Verk MC; Berendsen RL; Bakker PAHM; Feussner I; Pieterse CMJ Proc Natl Acad Sci U S A; 2018 May; 115(22):E5213-E5222. PubMed ID: 29686086 [TBL] [Abstract][Full Text] [Related]
12. Loss of OPT3 function decreases phloem copper levels and impairs crosstalk between copper and iron homeostasis and shoot-to-root signaling in Arabidopsis thaliana. Chia JC; Yan J; Rahmati Ishka M; Faulkner MM; Simons E; Huang R; Smieska L; Woll A; Tappero R; Kiss A; Jiao C; Fei Z; Kochian LV; Walker E; Piñeros M; Vatamaniuk OK Plant Cell; 2023 May; 35(6):2157-2185. PubMed ID: 36814393 [TBL] [Abstract][Full Text] [Related]
13. Iron Availability within the Leaf Vasculature Determines the Magnitude of Iron Deficiency Responses in Source and Sink Tissues in Arabidopsis. Nguyen NT; Khan MA; Castro-Guerrero NA; Chia JC; Vatamaniuk OK; Mari S; Jurisson SS; Mendoza-Cozatl DG Plant Cell Physiol; 2022 Jun; 63(6):829-841. PubMed ID: 35388430 [TBL] [Abstract][Full Text] [Related]
14. Beneficial rhizobacteria Pseudomonas simiae WCS417 induce major transcriptional changes in plant sugar transport. Desrut A; Moumen B; Thibault F; Le Hir R; Coutos-Thévenot P; Vriet C J Exp Bot; 2020 Dec; 71(22):7301-7315. PubMed ID: 32860502 [TBL] [Abstract][Full Text] [Related]
15. Type III Secretion System of Beneficial Rhizobacteria Stringlis IA; Zamioudis C; Berendsen RL; Bakker PAHM; Pieterse CMJ Front Microbiol; 2019; 10():1631. PubMed ID: 31379783 [TBL] [Abstract][Full Text] [Related]
16. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Wintermans PC; Bakker PA; Pieterse CM Plant Mol Biol; 2016 Apr; 90(6):623-34. PubMed ID: 26830772 [TBL] [Abstract][Full Text] [Related]
17. A Shoot Fe Signaling Pathway Requiring the OPT3 Transporter Controls GSNO Reductase and Ethylene in García MJ; Corpas FJ; Lucena C; Alcántara E; Pérez-Vicente R; Zamarreño ÁM; Bacaicoa E; García-Mina JM; Bauer P; Romera FJ Front Plant Sci; 2018; 9():1325. PubMed ID: 30254659 [TBL] [Abstract][Full Text] [Related]
18. Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis. Lei GJ; Zhu XF; Wang ZW; Dong F; Dong NY; Zheng SJ Plant Cell Environ; 2014 Apr; 37(4):852-63. PubMed ID: 24111973 [TBL] [Abstract][Full Text] [Related]
19. Gibberellin-induced expression of Fe uptake-related genes in Arabidopsis. Matsuoka K; Furukawa J; Bidadi H; Asahina M; Yamaguchi S; Satoh S Plant Cell Physiol; 2014 Jan; 55(1):87-98. PubMed ID: 24192296 [TBL] [Abstract][Full Text] [Related]
20. A salicylic acid-associated plant-microbe interaction attracts beneficial Flavobacterium sp. to the Arabidopsis thaliana phyllosphere. Sommer A; Wenig M; Knappe C; Kublik S; Foesel BU; Schloter M; Vlot AC Physiol Plant; 2024; 176(4):e14483. PubMed ID: 39169536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]