These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
420 related articles for article (PubMed ID: 31354804)
1. Comparison of Visual Stimuli for Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces in Virtual Reality Environment in terms of Classification Accuracy and Visual Comfort. Choi KM; Park S; Im CH Comput Intell Neurosci; 2019; 2019():9680697. PubMed ID: 31354804 [TBL] [Abstract][Full Text] [Related]
2. Novel Hybrid Brain-Computer Interface for Virtual Reality Applications Using Steady-State Visual-Evoked Potential-Based Brain-Computer Interface and Electrooculogram-Based Eye Tracking for Increased Information Transfer Rate. Ha J; Park S; Im CH Front Neuroinform; 2022; 16():758537. PubMed ID: 35281718 [TBL] [Abstract][Full Text] [Related]
3. Optimizing spatial properties of a new checkerboard-like visual stimulus for user-friendly SSVEP-based BCIs. Ming G; Pei W; Chen H; Gao X; Wang Y J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34544060 [No Abstract] [Full Text] [Related]
4. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces. Chang MH; Baek HJ; Lee SM; Park KS Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034 [TBL] [Abstract][Full Text] [Related]
5. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter. Zhang D; Huang B; Wu W; Li S Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229 [TBL] [Abstract][Full Text] [Related]
6. Application of hybrid SSVEP + P300 brain computer interface to control avatar movement in mobile virtual reality gaming environment. Kapgate DD Behav Brain Res; 2024 Aug; 472():115154. PubMed ID: 39038519 [TBL] [Abstract][Full Text] [Related]
7. Steady-State Visual Evoked Potential-Based Brain-Computer Interface Using a Novel Visual Stimulus with Quick Response (QR) Code Pattern. Siribunyaphat N; Punsawad Y Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214341 [TBL] [Abstract][Full Text] [Related]
8. A new grid stimulus with subtle flicker perception for user-friendly SSVEP-based BCIs. Ming G; Zhong H; Pei W; Gao X; Wang Y J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36827704 [No Abstract] [Full Text] [Related]
9. Novel hybrid visual stimuli incorporating periodic motions into conventional flickering or pattern-reversal visual stimuli for steady-state visual evoked potential-based brain-computer interfaces. Kwon J; Hwang J; Nam H; Im CH Front Neuroinform; 2022; 16():997068. PubMed ID: 36213545 [TBL] [Abstract][Full Text] [Related]
10. A comfortable steady state visual evoked potential stimulation paradigm using peripheral vision. Zhao X; Wang Z; Zhang M; Hu H J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33784640 [No Abstract] [Full Text] [Related]
11. The effect of stimulus number on the recognition accuracy and information transfer rate of SSVEP-BCI in augmented reality. Zhang R; Xu Z; Zhang L; Cao L; Hu Y; Lu B; Shi L; Yao D; Zhao X J Neural Eng; 2022 May; 19(3):. PubMed ID: 35477130 [No Abstract] [Full Text] [Related]
12. A comparative study of stereo-dependent SSVEP targets and their impact on VR-BCI performance. Liu H; Wang Z; Li R; Zhao X; Xu T; Zhou T; Hu H Front Neurosci; 2024; 18():1367932. PubMed ID: 38660227 [TBL] [Abstract][Full Text] [Related]
13. Mental fatigue in central-field and peripheral-field steady-state visually evoked potential and its effects on event-related potential responses. Lee MH; Williamson J; Lee YE; Lee SW Neuroreport; 2018 Oct; 29(15):1301-1308. PubMed ID: 30102642 [TBL] [Abstract][Full Text] [Related]
14. Binocularly incongruent, multifrequency-coded SSVEP in VR: feasibility and characteristics. Yang L; Sun Q; Van Hulle MM J Neural Eng; 2024 Sep; 21(5):. PubMed ID: 39231466 [No Abstract] [Full Text] [Related]
15. Phase-Approaching Stimulation Sequence for SSVEP-Based BCI: A Practical Use in VR/AR HMD. Hsu HT; Shyu KK; Hsu CC; Lee LH; Lee PL IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2754-2764. PubMed ID: 34847036 [TBL] [Abstract][Full Text] [Related]
16. A new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based brain-computer interface (BCI). Hwang HJ; Hwan Kim D; Han CH; Im CH Brain Res; 2013 Jun; 1515():66-77. PubMed ID: 23587933 [TBL] [Abstract][Full Text] [Related]
17. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor. Chen X; Wang Y; Zhang S; Xu S; Gao X J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820 [TBL] [Abstract][Full Text] [Related]
18. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials. Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674 [TBL] [Abstract][Full Text] [Related]
19. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI). Lim JH; Hwang HJ; Han CH; Jung KY; Im CH J Neural Eng; 2013 Apr; 10(2):026021. PubMed ID: 23528484 [TBL] [Abstract][Full Text] [Related]
20. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation. Punsawad Y; Wongsawat Y Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]