BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31355368)

  • 1. Binding interaction of sodium benzoate food additive with bovine serum albumin: multi-spectroscopy and molecular docking studies.
    Yu J; Liu JY; Xiong WM; Zhang XY; Zheng Y
    BMC Chem; 2019 Dec; 13(1):95. PubMed ID: 31355368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of sulfasalazine-bovine serum albumin and human serum albumin interaction by spectroscopic and theoretical approach.
    Rahman N; Khalil N
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Nov; 300():122865. PubMed ID: 37269654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined spectroscopies and molecular docking approach to characterizing the binding interaction of enalapril with bovine serum albumin.
    Pan DQ; Jiang M; Liu TT; Wang Q; Shi JH
    Luminescence; 2017 Jun; 32(4):481-490. PubMed ID: 27550396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the interaction between benzophenone and bovine serum albumin by spectroscopic methods.
    Zhang YZ; Zhang J; Li FF; Xiang X; Ren AQ; Liu Y
    Mol Biol Rep; 2011 Apr; 38(4):2445-53. PubMed ID: 21088910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Binding interaction of harpagoside and bovine serum albumin: spectroscopic methodologies and molecular docking].
    Cao TW; Huang WB; Shi JW; He W
    Zhongguo Zhong Yao Za Zhi; 2018 Mar; 43(5):993-1000. PubMed ID: 29676099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment on the binding characteristics of residual marbofloxacin in animal-derived food to bovine/human serum albumin by spectroscopy and molecular modelling.
    Li X; Yuan Y; Zhao R; Shao D; Bi S
    Luminescence; 2021 Jun; 36(4):977-985. PubMed ID: 33538386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the interaction between benzidine and bovine serum albumin by spectroscopic methods.
    Zhang YZ; Dai J; Xiang X; Li WW; Liu Y
    Mol Biol Rep; 2010 Mar; 37(3):1541-9. PubMed ID: 19437138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering the binding site and mechanism of new methylene blue with serum albumins: A multispectroscopic and computational investigation.
    Manivel P; Marimuthu P; Ilanchelian M
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Nov; 300():122900. PubMed ID: 37244028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of malachite green with bovine serum albumin: determination of the binding mechanism and binding site by spectroscopic methods.
    Zhang YZ; Zhou B; Zhang XP; Huang P; Li CH; Liu Y
    J Hazard Mater; 2009 Apr; 163(2-3):1345-52. PubMed ID: 18786760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the interaction characteristics of cefamandole with bovine serum albumin by spectroscopic technique.
    Wang Q; Liu X; Su M; Shi Z; Sun H
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():321-6. PubMed ID: 25448935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of interaction between lysionotin and bovine serum albumin using spectroscopic techniques combined with molecular modeling.
    Hu Y; Zhang G; Yan J
    Mol Biol Rep; 2014 Mar; 41(3):1693-702. PubMed ID: 24398555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the interaction between mercury (II) and bovine serum albumin by spectroscopic methods.
    Chunmei D; Cunwei J; Huixiang L; Yuze S; Wei Y; Dan Z
    Environ Toxicol Pharmacol; 2014 Mar; 37(2):870-7. PubMed ID: 24657888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing binding mode between sodium acid pyrophosphate and albumin: multi-spectroscopic and molecular docking analysis.
    Azimirad M; Zaheri M; Javaheri-Ghezeldizaj F; Yekta R; Ezzati Nazhad Dolatabadi J
    J Biomol Struct Dyn; 2024; 42(4):1725-1732. PubMed ID: 37909466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding interaction of sorafenib with bovine serum albumin: Spectroscopic methodologies and molecular docking.
    Shi JH; Chen J; Wang J; Zhu YY; Wang Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():630-7. PubMed ID: 25985127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the interaction of fisetholz with BSA/HSA by multi-spectroscopic, cyclic voltammetric, and molecular docking technique.
    Wu J; Bi SY; Sun XY; Zhao R; Wang JH; Zhou HF
    J Biomol Struct Dyn; 2019 Aug; 37(13):3496-3505. PubMed ID: 30176766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the combination characteristics of lumefantrine, an antimalarial drug and human serum albumin through spectroscopic and molecular docking studies.
    Musa KA; Ridzwan NFW; Mohamad SB; Tayyab S
    J Biomol Struct Dyn; 2021 Feb; 39(2):691-702. PubMed ID: 31913089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding interaction of quinclorac with bovine serum albumin: a biophysical study.
    Han XL; Mei P; Liu Y; Xiao Q; Jiang FL; Li R
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Oct; 74(3):781-7. PubMed ID: 19729340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro study on binding interaction of quinapril with bovine serum albumin (BSA) using multi-spectroscopic and molecular docking methods.
    Shi JH; Pan DQ; Jiang M; Liu TT; Wang Q
    J Biomol Struct Dyn; 2017 Aug; 35(10):2211-2223. PubMed ID: 27418394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multispectroscopic insight, morphological analysis and molecular docking studies of Cu
    Yousuf I; Bashir M; Arjmand F; Tabassum S
    J Biomol Struct Dyn; 2019 Aug; 37(12):3290-3304. PubMed ID: 30124142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined spectroscopies and molecular docking approach to characterizing the binding interaction between lisinopril and bovine serum albumin.
    Jiang M; Huang CR; Wang Q; Zhu YY; Wang J; Chen J; Shi JH
    Luminescence; 2016 Mar; 31(2):468-477. PubMed ID: 26300521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.