These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31355386)

  • 1. Ion effects on the conformation and dynamics of repetitive domains of a spider silk protein: implications for solubility and β-sheet formation.
    Oktaviani NA; Matsugami A; Hayashi F; Numata K
    Chem Commun (Camb); 2019 Aug; 55(66):9761-9764. PubMed ID: 31355386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation and dynamics of soluble repetitive domain elucidates the initial β-sheet formation of spider silk.
    Oktaviani NA; Matsugami A; Malay AD; Hayashi F; Kaplan DL; Numata K
    Nat Commun; 2018 May; 9(1):2121. PubMed ID: 29844575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of β-sheet crystals and a glycine-rich matrix on the thermal conductivity of spider dragline silk.
    Park J; Kim D; Lee SM; Choi JU; You M; So HM; Han J; Nah J; Seol JH
    Int J Biol Macromol; 2017 Mar; 96():384-391. PubMed ID: 28013005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and dynamics of aromatic residues in spider silk: 2D carbon correlation NMR of dragline fibers.
    Izdebski T; Akhenblit P; Jenkins JE; Yarger JL; Holland GP
    Biomacromolecules; 2010 Jan; 11(1):168-74. PubMed ID: 19894709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degree of Biomimicry of Artificial Spider Silk Spinning Assessed by NMR Spectroscopy.
    Otikovs M; Andersson M; Jia Q; Nordling K; Meng Q; Andreas LB; Pintacuda G; Johansson J; Rising A; Jaudzems K
    Angew Chem Int Ed Engl; 2017 Oct; 56(41):12571-12575. PubMed ID: 28791761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics of spider dragline silk fiber investigated by 2H MAS NMR.
    Shi X; Holland GP; Yarger JL
    Biomacromolecules; 2015 Mar; 16(3):852-9. PubMed ID: 25619304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining secondary structure in spider dragline silk by carbon-carbon correlation solid-state NMR spectroscopy.
    Holland GP; Creager MS; Jenkins JE; Lewis RV; Yarger JL
    J Am Chem Soc; 2008 Jul; 130(30):9871-7. PubMed ID: 18593157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Phosphate on the Molecular Properties, Interactions, and Assembly of Engineered Spider Silk Proteins.
    Yin Y; Griffo A; Gutiérrez Cruz A; Hähl H; Jacobs K; Linder MB
    Biomacromolecules; 2024 Jul; 25(7):3990-4000. PubMed ID: 38916967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A conserved spider silk domain acts as a molecular switch that controls fibre assembly.
    Hagn F; Eisoldt L; Hardy JG; Vendrely C; Coles M; Scheibel T; Kessler H
    Nature; 2010 May; 465(7295):239-42. PubMed ID: 20463741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen bonding-assisted thermal conduction in β-sheet crystals of spider silk protein.
    Zhang L; Chen T; Ban H; Liu L
    Nanoscale; 2014 Jul; 6(14):7786-91. PubMed ID: 24811747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, expression and solid-state NMR characterization of silk-like materials constructed from sequences of spider silk, Samia cynthia ricini and Bombyx mori silk fibroins.
    Yang M; Asakura T
    J Biochem; 2005 Jun; 137(6):721-9. PubMed ID: 16002994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. β-Sheet Structure Formation within Binary Blends of Two Spider Silk Related Peptides.
    Hofmaier M; Malanin M; Bittrich E; Lentz S; Urban B; Scheibel T; Fery A; Müller M
    Biomacromolecules; 2023 Feb; 24(2):825-840. PubMed ID: 36632028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WISE NMR characterization of nanoscale heterogeneity and mobility in supercontracted Nephila clavipes spider dragline silk.
    Holland GP; Lewis RV; Yarger JL
    J Am Chem Soc; 2004 May; 126(18):5867-72. PubMed ID: 15125679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spider-silk inspired polymeric networks by harnessing the mechanical potential of β-sheets through network guided assembly.
    Chan NJ; Gu D; Tan S; Fu Q; Pattison TG; O'Connor AJ; Qiao GG
    Nat Commun; 2020 Apr; 11(1):1630. PubMed ID: 32242004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analysis of the Gly-rich region in spider dragline silk using stable-isotope labeled sequential model peptides and solid-state NMR.
    Yamaguchi E; Yamauchi K; Gullion T; Asakura T
    Chem Commun (Camb); 2009 Jul; (28):4176-8. PubMed ID: 19585012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and pH-induced alterations of recombinant and natural spider silk proteins in solution.
    Leclerc J; Lefèvre T; Pottier F; Morency LP; Lapointe-Verreault C; Gagné SM; Auger M
    Biopolymers; 2012 Jun; 97(6):337-46. PubMed ID: 21898365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining hydrogen-bond interactions in spider silk with 1H-13C HETCOR fast MAS solid-state NMR and DFT proton chemical shift calculations.
    Holland GP; Mou Q; Yarger JL
    Chem Commun (Camb); 2013 Jul; 49(59):6680-2. PubMed ID: 23774714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A DOQSY approach for the elucidation of torsion angle distributions in biopolymers: application to silk.
    van Beek JD; Meier BH
    J Magn Reson; 2006 Jan; 178(1):106-20. PubMed ID: 16243550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silk Spinning in Silkworms and Spiders.
    Andersson M; Johansson J; Rising A
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27517908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilizing conformational changes for patterning thin films of recombinant spider silk proteins.
    Young SL; Gupta M; Hanske C; Fery A; Scheibel T; Tsukruk VV
    Biomacromolecules; 2012 Oct; 13(10):3189-99. PubMed ID: 22947370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.