These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 31355634)

  • 1. Waste-Derived Low-Cost Mycelium Nanopapers with Tunable Mechanical and Surface Properties.
    Jones M; Weiland K; Kujundzic M; Theiner J; Kählig H; Kontturi E; John S; Bismarck A; Mautner A
    Biomacromolecules; 2019 Sep; 20(9):3513-3523. PubMed ID: 31355634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface properties of chitin-glucan nanopapers from Agaricus bisporus.
    Nawawi WMFW; Lee KY; Kontturi E; Bismarck A; Mautner A
    Int J Biol Macromol; 2020 Apr; 148():677-687. PubMed ID: 31954796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Green synthesis approach: extraction of chitosan from fungus mycelia.
    Dhillon GS; Kaur S; Brar SK; Verma M
    Crit Rev Biotechnol; 2013 Dec; 33(4):379-403. PubMed ID: 23078670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible Fungal Materials: Shaping the Future.
    Gandia A; van den Brandhof JG; Appels FVW; Jones MP
    Trends Biotechnol; 2021 Dec; 39(12):1321-1331. PubMed ID: 33812663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust myco-composites: a biocomposite platform for versatile hybrid-living materials.
    Shen SC; Lee NA; Lockett WJ; Acuil AD; Gazdus HB; Spitzer BN; Buehler MJ
    Mater Horiz; 2024 Apr; 11(7):1689-1703. PubMed ID: 38315077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and Characterization of Bioblocks from Agricultural Waste Using Fungal Mycelium for Renewable and Sustainable Applications.
    Joshi K; Meher MK; Poluri KM
    ACS Appl Bio Mater; 2020 Apr; 3(4):1884-1892. PubMed ID: 35025311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-based films/nanopapers from lignocellulosic wastes for production of added-value micro-/nanomaterials.
    Guimarães BMR; Scatolino MV; Martins MA; Ferreira SR; Mendes LM; Lima JT; Junior MG; Tonoli GHD
    Environ Sci Pollut Res Int; 2022 Feb; 29(6):8665-8683. PubMed ID: 34490567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marine fungi as source of new hydrophobins.
    Cicatiello P; Gravagnuolo AM; Gnavi G; Varese GC; Giardina P
    Int J Biol Macromol; 2016 Nov; 92():1229-1233. PubMed ID: 27527694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new method for the quantification of chitin and chitosan in edible mushrooms.
    Nitschke J; Altenbach HJ; Malolepszy T; Mölleken H
    Carbohydr Res; 2011 Aug; 346(11):1307-10. PubMed ID: 21601835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of Ni2+ on the surface of molecularly imprinted adsorbent from Penicillium chysogenum mycelium.
    Su H; Wang Z; Tan T
    Biotechnol Lett; 2003 Jun; 25(12):949-53. PubMed ID: 12889829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renewable mycelium based composite - sustainable approach for lignocellulose waste recovery and alternative to synthetic materials - a review.
    Angelova GV; Brazkova MS; Krastanov AI
    Z Naturforsch C J Biosci; 2021 Nov; 76(11-12):431-442. PubMed ID: 34252997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental applications of chitosan and its derivatives.
    Yong SK; Shrivastava M; Srivastava P; Kunhikrishnan A; Bolan N
    Rev Environ Contam Toxicol; 2015; 233():1-43. PubMed ID: 25367132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and properties of chitin whisker reinforced chitosan membranes.
    Ma B; Qin A; Li X; Zhao X; He C
    Int J Biol Macromol; 2014 Mar; 64():341-6. PubMed ID: 24360895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of Living Entangled Network Composites Enabled by Mycelium.
    Wang H; Tao J; Wu Z; Weiland K; Wang Z; Masania K; Wang B
    Adv Sci (Weinh); 2024 Jun; 11(24):e2309370. PubMed ID: 38477443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates.
    Elsacker E; Vandelook S; Brancart J; Peeters E; De Laet L
    PLoS One; 2019; 14(7):e0213954. PubMed ID: 31329589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomaterials Derived from Fungal Sources-Is It the New Hype?
    Nawawi WMFBW; Jones M; Murphy RJ; Lee KY; Kontturi E; Bismarck A
    Biomacromolecules; 2020 Jan; 21(1):30-55. PubMed ID: 31592650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material.
    Appels FVW; Dijksterhuis J; Lukasiewicz CE; Jansen KMB; Wösten HAB; Krijgsheld P
    Sci Rep; 2018 Mar; 8(1):4703. PubMed ID: 29549308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionality of Surface Mycelium Interfaces in Wood Bonding.
    Sun W; Tajvidi M; Howell C; Hunt CG
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57431-57440. PubMed ID: 33306341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fungal chitin-glucan nanopapers with heavy metal adsorption properties for ultrafiltration of organic solvents and water.
    Yousefi N; Jones M; Bismarck A; Mautner A
    Carbohydr Polym; 2021 Feb; 253():117273. PubMed ID: 33278945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the mechanism of Zn cross-linking of chitin in a mycelium-based leather substitute and its performance evaluation.
    Li S; Cao S; Wang X; Zhang Y; Zhang X; Lu W; Zhu D
    Int J Biol Macromol; 2024 Sep; 276(Pt 2):133954. PubMed ID: 39029834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.