These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 31355634)
21. Characterization of Fungal Foams from Edible Mushrooms Using Different Agricultural Wastes as Substrates for Packaging Material. Majib NM; Sam ST; Yaacob ND; Rohaizad NM; Tan WK Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850157 [TBL] [Abstract][Full Text] [Related]
22. Advanced Materials From Fungal Mycelium: Fabrication and Tuning of Physical Properties. Haneef M; Ceseracciu L; Canale C; Bayer IS; Heredia-Guerrero JA; Athanassiou A Sci Rep; 2017 Jan; 7():41292. PubMed ID: 28117421 [TBL] [Abstract][Full Text] [Related]
24. Uncovering the Mechanical, Thermal, and Chemical Characteristics of Biodegradable Mushroom Leather with Intrinsic Antifungal and Antibacterial Properties. Bustillos J; Loganathan A; Agrawal R; Gonzalez BA; Perez MG; Ramaswamy S; Boesl B; Agarwal A ACS Appl Bio Mater; 2020 May; 3(5):3145-3156. PubMed ID: 35025358 [TBL] [Abstract][Full Text] [Related]
25. Film-forming ability of collagen hydrolysate extracted from leather solid wastes with chitosan. Ocak B Environ Sci Pollut Res Int; 2018 Feb; 25(5):4643-4655. PubMed ID: 29197053 [TBL] [Abstract][Full Text] [Related]
26. Morphology and mechanics of fungal mycelium. Islam MR; Tudryn G; Bucinell R; Schadler L; Picu RC Sci Rep; 2017 Oct; 7(1):13070. PubMed ID: 29026133 [TBL] [Abstract][Full Text] [Related]
27. Mycelium-Based Composites as a Sustainable Solution for Waste Management and Circular Economy. Barta DG; Simion I; Tiuc AE; Vasile O Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255571 [TBL] [Abstract][Full Text] [Related]
28. Mechanically strong nanopapers based on lignin containing cellulose micro- and nano-hybrid fibrils: Lignin content-fibrils morphology-strengthening mechanism. Dong J; Zeng J; Li P; Li J; Wang B; Xu J; Gao W; Chen K Carbohydr Polym; 2023 Jul; 311():120753. PubMed ID: 37028856 [TBL] [Abstract][Full Text] [Related]
29. Mechanical, Physical, and Chemical Properties of Mycelium-Based Composites Produced from Various Lignocellulosic Residues and Fungal Species. Aiduang W; Kumla J; Srinuanpan S; Thamjaree W; Lumyong S; Suwannarach N J Fungi (Basel); 2022 Oct; 8(11):. PubMed ID: 36354892 [TBL] [Abstract][Full Text] [Related]
30. Sustainable Innovation: Fabrication and Characterization of Mycelium-Based Green Composites for Modern Interior Materials Using Agro-Industrial Wastes and Different Species of Fungi. Aiduang W; Jatuwong K; Jinanukul P; Suwannarach N; Kumla J; Thamjaree W; Teeraphantuvat T; Waroonkun T; Oranratmanee R; Lumyong S Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399928 [TBL] [Abstract][Full Text] [Related]
31. Mycofabrication of Mycelium-Based Leather from Brown-Rot Fungi. Raman J; Kim DS; Kim HS; Oh DS; Shin HJ J Fungi (Basel); 2022 Mar; 8(3):. PubMed ID: 35330319 [TBL] [Abstract][Full Text] [Related]
32. Chitin and chitosan--value-added products from mushroom waste. Wu T; Zivanovic S; Draughon FA; Sams CE J Agric Food Chem; 2004 Dec; 52(26):7905-10. PubMed ID: 15612774 [TBL] [Abstract][Full Text] [Related]
33. Novel poss reinforced chitosan composite membranes for guided bone tissue regeneration. Tamburaci S; Tihminlioglu F J Mater Sci Mater Med; 2017 Dec; 29(1):1. PubMed ID: 29196900 [TBL] [Abstract][Full Text] [Related]
34. Preparation of chitooligosaccharides from fungal waste mycelium by recombinant chitinase. Lv M; Hu Y; Gänzle MG; Lin J; Wang C; Cai J Carbohydr Res; 2016 Jul; 430():1-7. PubMed ID: 27153004 [TBL] [Abstract][Full Text] [Related]
35. The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Kaur S; Dhillon GS Crit Rev Microbiol; 2014 May; 40(2):155-75. PubMed ID: 23488873 [TBL] [Abstract][Full Text] [Related]
36. Fabrication and properties of a porous chitin/chitosan conduit for nerve regeneration. Yang Y; Gu X; Tan R; Hu W; Wang X; Zhang P; Zhang T Biotechnol Lett; 2004 Dec; 26(23):1793-7. PubMed ID: 15672216 [TBL] [Abstract][Full Text] [Related]
37. Preparation of high-strength transparent chitosan film reinforced with surface-deacetylated chitin nanofibers. Ifuku S; Ikuta A; Egusa M; Kaminaka H; Izawa H; Morimoto M; Saimoto H Carbohydr Polym; 2013 Oct; 98(1):1198-202. PubMed ID: 23987464 [TBL] [Abstract][Full Text] [Related]
38. Influence of alkali metal cations on the thermal, mechanical and morphological properties of rectorite/chitosan bio-nanocomposite films. Babul Reddy A; Jayaramudu J; Siva Mohan Reddy G; Manjula B; Sadiku ER Carbohydr Polym; 2015 May; 122():230-6. PubMed ID: 25817663 [TBL] [Abstract][Full Text] [Related]
39. Fungal chitosan production and its characterization. Pochanavanich P; Suntornsuk W Lett Appl Microbiol; 2002; 35(1):17-21. PubMed ID: 12081543 [TBL] [Abstract][Full Text] [Related]
40. Characterization of Chitosan Nanofiber Sheets for Antifungal Application. Egusa M; Iwamoto R; Izawa H; Morimoto M; Saimoto H; Kaminaka H; Ifuku S Int J Mol Sci; 2015 Nov; 16(11):26202-10. PubMed ID: 26540046 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]