These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 31355634)

  • 41. Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparison.
    Torres-Rendon JG; Schacher FH; Ifuku S; Walther A
    Biomacromolecules; 2014 Jul; 15(7):2709-17. PubMed ID: 24947934
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-Performance Engineered Composites Biofabrication Using Fungi.
    Zhang M; Zhao X; Bai M; Xue J; Liu R; Huang Y; Wang M; Cao J
    Small; 2024 Jun; 20(25):e2309171. PubMed ID: 38196296
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of chitosan composites with synthetic polymers and inorganic additives.
    Lewandowska K
    Int J Biol Macromol; 2015 Nov; 81():159-64. PubMed ID: 26253510
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Novel Fabrication of Basalt Nanosheets with Ultrahigh Aspect Ratios Toward Enhanced Mechanical and Dielectric Properties of Aramid Nanofiber-Based Composite Nanopapers.
    Ji D; Song S; Lyu Y; Ren W; Li L; Yang B; Zhang M
    Adv Sci (Weinh); 2023 Sep; 10(27):e2302371. PubMed ID: 37485624
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers.
    Philibert T; Lee BH; Fabien N
    Appl Biochem Biotechnol; 2017 Apr; 181(4):1314-1337. PubMed ID: 27787767
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chitosan-mediated changes in cell wall composition, morphology and ultrastructure in two wood-inhabiting fungi.
    Vesentini D; Steward D; Singh AP; Ball R; Daniel G; Franich R
    Mycol Res; 2007 Aug; 111(Pt 8):875-90. PubMed ID: 17707625
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Physicochemical properties and bioactivity of fungal chitin and chitosan.
    Wu T; Zivanovic S; Draughon FA; Conway WS; Sams CE
    J Agric Food Chem; 2005 May; 53(10):3888-94. PubMed ID: 15884813
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication of flame-retardant and water-resistant nanopapers through electrostatic complexation of phosphorylated cellulose nanofibers and chitin nanocrystals.
    Zhang Y; Tao L; Zhao L; Dong C; Liu Y; Zhang K; Liimatainen H
    J Colloid Interface Sci; 2024 Dec; 676():61-71. PubMed ID: 39018811
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improving the Physical and Mechanical Properties of Mycelium-Based Green Composites Using Paper Waste.
    Teeraphantuvat T; Jatuwong K; Jinanukul P; Thamjaree W; Lumyong S; Aiduang W
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257061
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content.
    Azeredo HM; Mattoso LH; Avena-Bustillos RJ; Filho GC; Munford ML; Wood D; McHugh TH
    J Food Sci; 2010; 75(1):N1-7. PubMed ID: 20492188
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chitin and chitosan from Basidiomycetes.
    Di Mario F; Rapanà P; Tomati U; Galli E
    Int J Biol Macromol; 2008 Jul; 43(1):8-12. PubMed ID: 18023863
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An inclusive physicochemical comparison of natural and synthetic chitin films.
    Kaya M; Salaberria AM; Mujtaba M; Labidi J; Baran T; Mulercikas P; Duman F
    Int J Biol Macromol; 2018 Jan; 106():1062-1070. PubMed ID: 28842199
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chitin--the undisputed biomolecule of great potential.
    Tharanathan RN; Kittur FS
    Crit Rev Food Sci Nutr; 2003; 43(1):61-87. PubMed ID: 12587986
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lime treatment of shrimp head waste for the generation of highly digestible animal feed.
    Coward-Kelly G; Agbogbo FK; Holtzapple MT
    Bioresour Technol; 2006 Sep; 97(13):1515-20. PubMed ID: 16115760
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biocompatibility of potential wound management products: hydrogen peroxide generation by fungal chitin/chitosans and their effects on the proliferation of murine L929 fibroblasts in culture.
    Chung LY; Schmidt RJ; Hamlyn PF; Sagar BF; Andrews AM; Turner TD
    J Biomed Mater Res; 1998 Feb; 39(2):300-7. PubMed ID: 9457561
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of chitosan edible films obtained with various polymer concentrations and drying temperatures.
    Homez-Jara A; Daza LD; Aguirre DM; Muñoz JA; Solanilla JF; Váquiro HA
    Int J Biol Macromol; 2018 Jul; 113():1233-1240. PubMed ID: 29548921
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predictive analysis of chitosan-based nanocomposite biopolymers elastic properties at nano- and microscale.
    Kossovich EL; Safonov RA
    J Mol Model; 2016 Apr; 22(4):75. PubMed ID: 26970953
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Understanding Toughness in Bioinspired Cellulose Nanofibril/Polymer Nanocomposites.
    Benítez AJ; Lossada F; Zhu B; Rudolph T; Walther A
    Biomacromolecules; 2016 Jul; 17(7):2417-26. PubMed ID: 27303948
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Study on the Sound Absorption Properties of Mycelium-Based Composites Cultivated on Waste Paper-Based Substrates.
    Walter N; Gürsoy B
    Biomimetics (Basel); 2022 Jul; 7(3):. PubMed ID: 35892369
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole.
    Lay M; Méndez JA; Delgado-Aguilar M; Bun KN; Vilaseca F
    Carbohydr Polym; 2016 Nov; 152():361-369. PubMed ID: 27516283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.