These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31355798)

  • 1. Preparation of Graphene-Supported Microwell Liquid Cells for In Situ Transmission Electron Microscopy.
    Hutzler A; Fritsch B; Jank MPM; Branscheid R; Spiecker E; März M
    J Vis Exp; 2019 Jul; (149):. PubMed ID: 31355798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Graphene Liquid Cell Transmission Electron Microscopy to Study in Situ Nanocrystal Etching.
    Hauwiller MR; Ondry JC; Alivisatos AP
    J Vis Exp; 2018 May; (135):. PubMed ID: 29863683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Use of Graphene and Its Derivatives for Liquid-Phase Transmission Electron Microscopy of Radiation-Sensitive Specimens.
    Cho H; Jones MR; Nguyen SC; Hauwiller MR; Zettl A; Alivisatos AP
    Nano Lett; 2017 Jan; 17(1):414-420. PubMed ID: 28026186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging of soft materials using in situ liquid-cell transmission electron microscopy.
    He K; Shokuhfar T; Shahbazian-Yassar R
    J Phys Condens Matter; 2019 Mar; 31(10):103001. PubMed ID: 30524096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing dynamic processes of materials in liquids using liquid cell transmission electron microscopy.
    Niu KY; Liao HG; Zheng H
    J Vis Exp; 2012 Dec; (70):. PubMed ID: 23287885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene Enclosure of Chemically Fixed Mammalian Cells for Liquid-Phase Electron Microscopy.
    Blach P; Keskin S; de Jonge N
    J Vis Exp; 2020 Sep; (163):. PubMed ID: 33016942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy.
    Chen Q; Smith JM; Park J; Kim K; Ho D; Rasool HI; Zettl A; Alivisatos AP
    Nano Lett; 2013 Sep; 13(9):4556-61. PubMed ID: 23944844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dendritic gold nanowire growth observed in liquid with transmission electron microscopy.
    Kraus T; de Jonge N
    Langmuir; 2013 Jul; 29(26):8427-32. PubMed ID: 23789977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabricating capacitive micromachined ultrasonic transducers with a novel silicon-nitride-based wafer bonding process.
    Logan A; Yeow JT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):1074-84. PubMed ID: 19473926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage.
    Puster M; Rodríguez-Manzo JA; Balan A; Drndić M
    ACS Nano; 2013 Dec; 7(12):11283-9. PubMed ID: 24224888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization of Cellular Components in a Mammalian Cell with Liquid-Cell Transmission Electron Microscopy.
    Besztejan S; Keskin S; Manz S; Kassier G; Bücker R; Venegas-Rojas D; Trieu HK; Rentmeister A; Miller RJ
    Microsc Microanal; 2017 Feb; 23(1):46-55. PubMed ID: 28137345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A three-mask process for fabricating vacuum-sealed capacitive micromachined ultrasonic transducers using anodic bonding.
    Yamaner FY; Zhang X; Oralkan Ö
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):972-82. PubMed ID: 25965687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Single-Crystal Graphene to Form Arrays of Nanocapsules Enabling the Observation of Light Elements in Liquid Cell Transmission Electron Microscopy.
    Lee C; Huang M; Luo D; Jang JE; Park C; Kang S; Ruoff RS; Jin S; Lee HW
    Nano Lett; 2022 Sep; 22(18):7423-7431. PubMed ID: 36044736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low voltage transmission electron microscopy of graphene.
    Bachmatiuk A; Zhao J; Gorantla SM; Martinez IG; Wiedermann J; Lee C; Eckert J; Rummeli MH
    Small; 2015 Feb; 11(5):515-42. PubMed ID: 25408379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Transmission Electron Microscopy Modulation of Transport in Graphene Nanoribbons.
    Rodríguez-Manzo JA; Qi ZJ; Crook A; Ahn JH; Johnson AT; Drndić M
    ACS Nano; 2016 Apr; 10(4):4004-10. PubMed ID: 27010816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and characterization of sample-supporting film made of silicon nitride for large-area observation in transmission electron microscopy.
    Konyuba Y; Haruta T; Ikeda Y; Fukuda T
    Microscopy (Oxf); 2018 Dec; 67(6):367-370. PubMed ID: 30272156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat- and electron-beam-induced transport of gold particles into silicon oxide and silicon studied by in situ high-resolution transmission electron microscopy.
    Biskupek J; Kaiser U; Falk F
    J Electron Microsc (Tokyo); 2008 Jun; 57(3):83-9. PubMed ID: 18504308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene MEMS: AFM probe performance improvement.
    Martin-Olmos C; Rasool HI; Weiller BH; Gimzewski JK
    ACS Nano; 2013 May; 7(5):4164-70. PubMed ID: 23560447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene Liquid Enclosure for Single-Molecule Analysis of Membrane Proteins in Whole Cells Using Electron Microscopy.
    Dahmke IN; Verch A; Hermannsdörfer J; Peckys DB; Weatherup RS; Hofmann S; de Jonge N
    ACS Nano; 2017 Nov; 11(11):11108-11117. PubMed ID: 29023096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA mediated water-dispersible graphene fabrication and gold nanoparticle-graphene hybrid.
    Liu F; Choi JY; Seo TS
    Chem Commun (Camb); 2010 Apr; 46(16):2844-6. PubMed ID: 20369202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.