These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 31356040)
1. Pyrenyl-Functionalized Polysiloxane Based on Synergistic Effect for Highly Selective and Highly Sensitive Detection of 4-Nitrotoluene. Gou Z; Zhang X; Zuo Y; Tian M; Dong B; Lin W ACS Appl Mater Interfaces; 2019 Aug; 11(33):30218-30227. PubMed ID: 31356040 [TBL] [Abstract][Full Text] [Related]
2. Oligomer-coated carbon nanotube chemiresistive sensors for selective detection of nitroaromatic explosives. Zhang Y; Xu M; Bunes BR; Wu N; Gross DE; Moore JS; Zang L ACS Appl Mater Interfaces; 2015 Apr; 7(14):7471-5. PubMed ID: 25823968 [TBL] [Abstract][Full Text] [Related]
3. Self-Diffusion Driven Ultrafast Detection of ppm-Level Nitroaromatic Pollutants in Aqueous Media Using a Hydrophilic Fluorescent Paper Sensor. Lu W; Zhang J; Huang Y; Théato P; Huang Q; Chen T ACS Appl Mater Interfaces; 2017 Jul; 9(28):23884-23893. PubMed ID: 28650607 [TBL] [Abstract][Full Text] [Related]
4. Fluorescent Detection of 2,4-DNT and 2,4,6-TNT in Aqueous Media by Using Simple Water-Soluble Pyrene Derivatives. Kovalev IS; Taniya OS; Slovesnova NV; Kim GA; Santra S; Zyryanov GV; Kopchuk DS; Majee A; Charushin VN; Chupakhin ON Chem Asian J; 2016 Mar; 11(5):775-81. PubMed ID: 26757403 [TBL] [Abstract][Full Text] [Related]
5. Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection. Ma Y; Li H; Peng S; Wang L Anal Chem; 2012 Oct; 84(19):8415-21. PubMed ID: 22946839 [TBL] [Abstract][Full Text] [Related]
6. Highly Selective and Sensitive Detection of Nitroaromatic Compounds and Metal Ions by Supramolecular Assemblies of 3,3',5,5'-Azobenzenetetracarboxylic Acid and 4,4'-Bipyridine. Zhang X; Duan Y; Zhang N; Zhao L; Luo X; Wu J; Yu X J Fluoresc; 2017 Jan; 27(1):281-286. PubMed ID: 27785650 [TBL] [Abstract][Full Text] [Related]
7. 2,4,6-Trinitrophenol detection by a new portable sensing gadget using carbon dots as a fluorescent probe. Chen B; Chai S; Liu J; Liu C; Li Y; He J; Yu Z; Yang T; Feng C; Huang C Anal Bioanal Chem; 2019 Apr; 411(11):2291-2300. PubMed ID: 30826851 [TBL] [Abstract][Full Text] [Related]
8. Design and fabrication of optical chemical sensor for detection of nitroaromatic explosives based on fluorescence quenching of phenol red immobilized poly(vinyl alcohol) membrane. Zarei AR; Ghazanchayi B Talanta; 2016 Apr; 150():162-8. PubMed ID: 26838395 [TBL] [Abstract][Full Text] [Related]
9. Fluorescent sensors for nitroaromatic compounds based on monolayer assembly of polycyclic aromatics. Zhang S; Lü F; Gao L; Ding L; Fang Y Langmuir; 2007 Jan; 23(3):1584-90. PubMed ID: 17241091 [TBL] [Abstract][Full Text] [Related]
10. Novel polysiloxane-based rhodamine B fluorescent probe for selectively detection of Al Yang T; Zuo Y; Zhang Y; Gou Z; Lin W Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():207-213. PubMed ID: 30901706 [TBL] [Abstract][Full Text] [Related]
11. Utilizing excited-state proton transfer fluorescence quenching mechanism, layered rare earth hydroxides enable ultra-sensitive detection of nitroaromatic. Shen Y; Hong R; He X; Wang C; Wang X; Li S; Zhu X; Gui D J Colloid Interface Sci; 2024 Nov; 673():564-573. PubMed ID: 38889547 [TBL] [Abstract][Full Text] [Related]
12. Modification of extended open frameworks with fluorescent tags for sensing explosives: competition between size selectivity and electron deficiency. Gole B; Bar AK; Mukherjee PS Chemistry; 2014 Feb; 20(8):2276-91. PubMed ID: 24459002 [TBL] [Abstract][Full Text] [Related]
13. Diffusion-controlled detection of trinitrotoluene: interior nanoporous structure and low highest occupied molecular orbital level of building blocks enhance selectivity and sensitivity. Che Y; Gross DE; Huang H; Yang D; Yang X; Discekici E; Xue Z; Zhao H; Moore JS; Zang L J Am Chem Soc; 2012 Mar; 134(10):4978-82. PubMed ID: 22339204 [TBL] [Abstract][Full Text] [Related]
14. A novel luminescent Pb(ii) - organic framework exhibiting a rapid and selective detection of trace amounts of NACs and Fe Luo X; Zhang X; Duan Y; Wang X; Zhao J Dalton Trans; 2017 May; 46(19):6303-6311. PubMed ID: 28451678 [TBL] [Abstract][Full Text] [Related]
15. Fast detection of nitroaromatics using phosphonate pyrene motifs as dual chemosensors. Venkatramaiah N; Firmino AD; Almeida Paz FA; Tomé JP Chem Commun (Camb); 2014 Sep; 50(68):9683-6. PubMed ID: 25017665 [TBL] [Abstract][Full Text] [Related]
16. Core-modified of fluoranthene with "propeller" structure for highly sensitive detection of nitroaromatic compounds. Liang Y Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():474-483. PubMed ID: 30172876 [TBL] [Abstract][Full Text] [Related]
17. Detection of Nitroaromatics by Pyrene-Labeled Starch Nanoparticles. Patel S; Seet J; Li L; Duhamel J Langmuir; 2019 Oct; 35(40):13145-13156. PubMed ID: 31498989 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of magnetically separable fluorescent terbium-based MOF nanospheres for highly selective trace-level detection of TNT. Qian JJ; Qiu LG; Wang YM; Yuan YP; Xie AJ; Shen YH Dalton Trans; 2014 Mar; 43(10):3978-83. PubMed ID: 24452313 [TBL] [Abstract][Full Text] [Related]
19. Multicomponent assembly of fluorescent-tag functionalized ligands in metal-organic frameworks for sensing explosives. Gole B; Bar AK; Mukherjee PS Chemistry; 2014 Oct; 20(41):13321-36. PubMed ID: 25164426 [TBL] [Abstract][Full Text] [Related]
20. APTS and rGO co-functionalized pyrenated fluorescent nanonets for representative vapor phase nitroaromatic explosive detection. Guo L; Zu B; Yang Z; Cao H; Zheng X; Dou X Nanoscale; 2014; 6(3):1467-73. PubMed ID: 24316887 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]